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CHAPTER I. INTRODUCTION 

General Load Modeling 

Two of the major functions involved in electric utilities are system 

planning and operation. These functions require extensive use of simula­

tion tools such as loadflow, faulted system analysis, contingency analy­

sis and dynamic stability. One of the elements that is required in the 

realistic simulation of power systems is the load. The characteristics 

of the load models used in these studies have been shown to significantly 

effect the behavior of the power systems [6]. For these system simula­

tions to accurately reflect the actual power system, the proper load 

representation becomes very important. In order to represent the 

power system load, there have been a variety of load models suggested 

[6, 13]. One may divide power system loads into two classes: (1) static, 

and (2) rotating. 

Static load models 

The load representation in typical system studies is a static load 

model where the load is represented as constant MVA, constant current, 

constant impedance or some combination of the three [6]. These static 

models may be expressed by equations 1.1 and 1.2; 

P(V) = P^(aV^ + bV + c) (1.1) 

Q(V) = Qg(dV^ + eV + g) (1.2) 

where constants "a" and "d" specify the per unit of real and reactive 

load that behaves as constant impedance, and constants "b" and "e" 
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specify the per unit of real and reactive load that behaves as constant 

current, and constant "c" and "g" specify the per unit of real and 

reactive load that behaves as constant MVA. 

Rotating load models 

Arthur D. Little [10] has analyzed and classified load in the 

United States. This study has shown that induction motors constitute 

over 66% of the total system load. This contribution to the load is 

large enough that one should examine the dynamic effects of induction 

motors on the various types of simulation studies. 

Individual induction machines can be represented in a number of 

ways including: 

(1) A single impedance; 

(2) An equivalent steady-state circuit where the inertia transients 

are considered; and 

(3) Full representation by the o.d.q. model where stator and 

rotor electrical transients and inertia transients are 

included. 

All of these models have been used to represent a single induction 

machine in one or more types of power system studies. 

Multi-Machine Starting of Rotating Loads 

System studies have shown that modern network configurations are 

encountered in which the dynamic behavior of large industrial loads 

has a pronounced influence on transient studies [3]. 

Industrial plants typically have controlled and uncontrolled types 
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of loads. Controlled induction motor loads are those remotely controlled 

by an operator or which have a presequenced schedule of start-up. Uncon­

trolled induction motor loads are those with automatic restarters, motors 

that operate independently of the system voltage with limited or no 

built-in protéction devices, or those that have an operator assigned 

to each motor. 

A system designer tries to avoid simultaneous starting of a large 

number of induction motors either by remote control or by sequencing 

the motor start-up procedure. Starting motors one by one would be 

impractical in an industry large enough to warrant automatic starting 

control of induction motor loads. Therefore, a sequential starting pro­

cedure of small groups of motors is adopted. In these cases, the next 

group of motors is usually started before the previously started group 

of motors reaches normal steady-state conditions. 

• Uncontrolled motor loads include unintentional restarts that can 

occur where the motors' switching devices are independent of the system 

voltage, e.g. electrically operated water or oil pumps. Even though the 

industrial load may be temporarily disconnected from the power source, 

the motors are still electrically connected. Consequently, when the 

power is restored, a large number of motors will begin to start up 

simultaneously. 

Another type of uncontrolled load is due to industrial plants' need 

for continuity of process. When a power outage occurs with a duration 

less than a preset length of time, the automatic restarters will start 

all motors that were in operation prior to the power outage. This is a 
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typical mode of operation In refineries. 

One more type of uncontrolled Induction motor load would be found 

In Industries such as foundries or auto industries where a large number 

of induction motors are assigned to individual operators. These Induc­

tion motors are switched on and off intermittently due to the nature of 

the work. While numerous motors are operating at normal condition, a 

random number of additional motors are being switched on and off. 

No matter what type of motor load is used in industry (controlled 

or uncontrolled), multi-machine starting is one of the load features. 

A power system analysis for the purpose of voltage dip studies, design 

of industrial distribution systems, contingency analysis, or stability 

studies should examine the effect of multi-machine starting. 

Review of Existing Induction Motor Load Models 

The problem of induction machine modeling has been studied over 

many years starting with Stanley [18] and Maginnls and Schultz [11]. 

These researchers studied the interactive effects of machine loads and 

the power system. Stanley [18] and Krause and Thomas [9] have developed 

a number of equations for studying the steady state and transient be­

havior of induction machines. Brereton et al. [5] developed a method 

of representing an induction motor load for power system stability 

studies. In Sastry and Burrldge's work [17], the performance of an 

induction machine predicted by a reduced order model is discussed. 

These authors made a comparison of the linearized version of the 

detailed and reduced order model for dynamic stability studies and 

showed the effects of Ignoring stator electrical transients. Berg and 
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Subramaniam [4] discussed modeling of Induction motor loads for the 

purpose of power system transient studies. A number of motor models 

were discussed and are presented In the following paragraphs. 

Single machine two axis model 

The assumptions made for the two axis model Include neglecting 

core losses, saturation, and skin effects. The performance equations 

for three-phase squirrel cage motors may be expressed In terms of volt­

ages and currents, rotor position 0, winding parameters, and time [18]. 

(1.3) 

where p = d/t, superscripts s and r denote stator and rotor, subscripts 

a, b and c denote the three phases. 

For solution purposes, it is usually convenient to transform the 

variables to a two-phase equivalent. The orthogonal axes rotate at syn­

chronous speed w with respect to the stator and are designated d and q, 

where d is direct and q is quadrature. The following set of voltage-

current relations results. 

s 

^d 

V® 
q 

0 

0 

R® + L% 

uiL 

Mp 

Mscj 

-coL" 

R® + L®p 

Mp 

u)M 

-wM 

Mp 

-Msoj R^ + L^p -L^sw 

Mp 
r 

L sto R^ + L^p 

1® 
q 

(1.4) 

where R®, R^ and L^, are the resistances and self Inductances of the 

equivalent two-phase windings of the stator and rotor, M is the maximum 

mutual Inductance between the stator and rotor windings in the two-phase 
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equivalent, ui is the angular frequency of the supply voltage, and s is 

per unit slip given by 

s = 1 - w ^p0 (1.5) 

Assuming symmetrical, balanced supply voltages of amplitude V^, 

angular frequency oi and, for the reference phase, an arbitrary phase 

angle <(), the power invariant transformation yields 

= Ji V cos(j) ; 
m 

sin# 

(1.6a) 

(1.6b) 

4' 

1= 
q 

_ 1 

v®/L® 
q 

+ 

-K^v®/M 
a 

s
'

 C
O

 
>
 1 

-R®/L® -a)(a+K^(l-s)) K^R^/M a)(l-s)M/L' 

-a)(a+K^(l-s)) -R®/L® -a)(l-s)M/L® K^R^/M 

K^R®/M -w(l-s)M/L^ -R^/L^ w(a-l+s) 

w(l-s)M/L^ K^R^/M -w(a-l+s) -R^/L^ 

(1.7) 

(|) can be set to zero, in which case v̂  equals the line-to-line rms volt­

age, appearing as a dc quantity, and all other input voltage vector 

elements are zero. 

The current derivatives required for numerical solution are obtained 

from equation 1.4 and are expressed by equation 1.7, where 

K = M(L®L^)"^''2 (1.8a) 
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a = 1 - . (1.8) 

The developed torque can be written as 

(1-9) 

and the shaft load torque is assumed to be of the form 

= ^o % (1.10) 

where is the mechanical speed and a is a constant depending on the 

type of load connected. With inertia J, the equation of motion becomes 

do) -

-ar - J (Te - V • (1-11) 

Input active and reactive power to the motor can also be expressed 

conveniently in terms .of the transformed variables as follows; 

P - + "qiq (1-12) 

Q - Vql% - . (1.13) 

In this method, all the above equations are evaluated numerically 

to determine P and Q, the total input power to the motor. 

The transformation of a, b, c variables to o.d.q. variables is 

given in Appendix D. 

Single induction machine model including mechanical 

and rotor electrical transients only 

In this model, stator electrical transients are neglected [5]. 

Electrical rotor transients are governed by 
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de' 1 
= ip— (e'-j (x-x')i)+je' — s 4., ii 

do dt 
(1.14) 

V 

rm 
— ; 

Figure 1.1. Induction machine model including rotor electrical 

transient 

i = 

ds 
dt 

V - e' 

2H Te 

Tg = Real Ce'i*) 

(1.15) 

(1.16) 

(1.17) 

where: 

i = phasor current 

i* = current conjugate 

V = supply voltage 

e' = complex internal emf, proportional to rotor flux linkages 

X = input reactance at zero slip 

x' = input reactance at 1 per unit slip 

= rotor time constant, stator open circuit 
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0 = electrical angle of phase 1 of rotor referred to d axis 

rotating at synchronous speed. 

Single machine model including mechanical 

transients only 

This model uses conventional steady-state circuit equations with 

phasor representation of electrical variables along with the equation 

of mechanical motion. 

The model has been utilized for the development of multi-machine 

models by Berg and Subramaniam [4]. 

Multi-machine modeling 

Representing a group of induction motors by a single equivalent 

model was suggested by Akhtar [2]. His model is restricted to a rela­

tively narrow operating range near full load speed due to the assumption 

of a fixed linear torque speed characteristic. Also, he assumed that 

all motors in the group run at the same p.u. speed. 

Abdel-Hakim and Berg [1] derived a simple equivalent of a group 

of motors, neglecting stator copper losses. The equivalent circuit was 

used as the basis for the model. The motors' electrical transients are 

neglected. This model is also useful for only the running condition 

and not for starting. 

More recently, Iliceto and Capasso [8] have studied the modeling of 

a number of induction machines when the supply voltage undergoes voltage 

dips and swings after the occurrence of system faults. In Iliceto and 

Capasso's model, the stator electrical transients were neglected. They 
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noted that two parameters can have a marked influence on the dynamic 

behavior of large induction motors, the inertia constant H, and the 

time constant of the rotor with open-circuited stator They 

developed a statistical approach to calculate the weighted mean of all 

time constants. 

n 
X p_ y 

1=1 do,i i 

T'doeq n (1-18) 

where is the individual motor power rating. 

Their results showed such an equivalent model is acceptable only 

for motor groups containing motors whose inertia constant H does not 

differ widely in the group under study. For this condition, the dynamic 

equivalents were shown to have errors in the following ranges for dif­

ferent power ratings: 

(!) Up to 20-25% error when the power rating of the largest motor 

is less than twice the rating of the smaller one. 

(ii) From 25% to 45% error for power rating ratios between 2 and 

10. 

The results were even less favorable for motor groups having a 

common value of T' and different, values of H. It was found that in 
do 

such cases, the simulation of the complete group by a single "equivalent 

machine" is not proper. 

The inertia constant to be assigned to the equivalent is calculated 

as a weighted mean. 
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iiVi 
»eq = — (1-19) 

The remaining parameters of the dynamic equivalents 

and X' are calculated as weighted means in a like manner to T' , 
eq ° doeq 

and H 
eq 

where 

R = equivalent stator winding resistance; 
seq 

X^^ = equivalent reactance at synchronous speed; and 

X' = equivalent reactance at blocked rotor. 
eq 

This model is intended for motors in the running state and could 

not be applied directly to the condition of starting induction motors. 

Summary of Literature Review 

There have been a number of induction machine representations sug­

gested. Most of the models are used to represent a single induction 

machine such as those suggested by Brereton et al. [5], Maginnis and 

Schultz [11], Krause and Thomas [9], and Stanley [18]. Early in the art, 

Brereton et al. [5] developed various simplified models for induction 

machines for use in transient stability studies and showed the limita­

tion of some of the simplified models. Equations derived by Stanley 

[17] and Krause and Thomas [9] are widely used for studying steady-state 

and transient behavior of induction machines. 

Another portion of induction machine modeling encompasses represent­

ing a group of induction motors. Akhtar [2] proposed a model using the 
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assumptions that the machines are all running at the same p.u. speed 

and that they have a linear torque speed relationship. Another method 

of grouping induction motors was proposed and formulated by Abdel-Hakim 

and Berg [1] for calculating the equivalent of a number of induction 

machines supplied from a common bus. In this method, all machines are 

represented by their equivalent circuit and the equation of mechanical 

motion. This model is applicable to running conditions only. 

Another method of obtaining a single unit equivalent was developed 

by Iliceto and Capasso [8]. They used a third order model (which in­

cludes the rotor electrical and mechanical transients of the induction 

machines) in deriving the equivalent. The open circuit time constant, 

T'jg, and the inertia constant, H, of the rotor and connected mechanical 

load are important parameters which greatly affect the dynamic response 

of any motor. In their work, all the equivalent parameters of the single 

unit model are given by the weighted averages of all the individual 

machine parameters. The weighting factors are the motor power ratings. 

These authors found that not all motors could be combined into one 

equivalent, but only those satisfying the condition H > (%) T' . 
z do 

All these proposed models for grouping induction machines are con­

fined to machines running near their full load condition. To this 

researcher's knowledge, no published research which includes the start­

ing effects of a group of induction motors exists. 

Research Objective 

The objective of this research includes the following points: 

(1) Develop a single equivalent model of a group of induction 
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machines for starting as well as running conditions. This 

model can be used for different types of power system studies 

such as: 

(a) Voltage dip due to starting one or more motors; 

(b) Circuit protector rating and time current characteristics; 

(c) Contingency analysis for system overload during the 

start-up of one or more induction motors ; and 

(d) System stability studies. 

(2) Expand the equivalent model to include machines with deep bar 

rotors. 

(3) Compare the proposed equivalent model with the superposition 

of all the machines represented by their equivalent circuit 

to verify the appropriateness of the equivalent model. 

(4) Determine criteria for grouping similar induction machines 

into a single unit. 

(5) Illustrate applications of the proposed dynamic load model. 

The improvement areas to be examined are validity of the model over 

the whole speed range (zero to full load speed), effects of deep-bar 

rotor, accuracy, and computational and data requirements. 

The representation which will be used as the basis for the model 

development is the induction motor steady-state equivalent circuit. 

This permits the calculation of electrical and mechanical input/output 

quantities while taking the mechanical transients into account, but as­

sumes that all electrical transients are negligible. The validity of 

this assumption depends on the induction motor design and its connected load. 
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Research Outline 

To develop a single equivalent unit for a group of induction 

motors, the equivalent circuit along with the equation of motion will be 

used. This research is subdivided into four parts. 

Part Equivalent model behavior 

In this part, the research will focus on developing an equivalent 

model of a group of induction motors where the parameters of the 

equivalent model are expressed as functions of the individual machines' 

parameters and speeds. A series of studies of the performance of a 

group of induction motors under various conditions will be conducted. 

These studies assume a prior knowledge of the separate characteristics 

(current, torque, speed vs. time) of each motor. Individual motor 

characteristics may be provided by the manufacturers or can simply 

be found by digital computer simulation of each motor knowing 

their equivalent circuit parameters. The following steps outline 

Part I. 

(1) Find the electrical parameters of a single equivalent model by 

network reduction and the mechanical parameters using power 

invariance. 

(2.) Determine starting characteristics of the single-unit equiva­

lent of two induction motors under the following conditions ; 

(a) Simultaneous start under no load condition. 

(b) Simultaneous start under load condition. 

(c) Nonsimultaneous start under noload condition. 

(d) Nonsimultaneous start under load condition. 
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(3) Determine starting characteristics of the single-unit equiva­

lent of two induction motors including deep-bar effects under 

the conditions specified in Step 2. 

(4) Expand the modeling process to three or more motors. 

Part II. Sensitivity analysis and mathematical 
development of the model 

In this part, the goal is to establish a dynamic single equivalent 

model of a group of motors where the parameters of the model are inde­

pendent of the individual motor speeds. The mathematical development 

of the dynamic single equivalent motor will be illustrated in the fol­

lowing steps: 

(1) Analyze the variable leakage reactance coefficient (3) curves 

and determine the factors which effect the shapes, magnitudes 

and period of the curve variations for starting two induction 

motors under the conditions of Step 2 of Part I. 

(2) Determine the effect of deep-bar rotor conductors on the 3 

curve. 

(3) Define an approximate curve to practically but accurately fit 

the g curve for more than two motors. 

(4) Define an approximate 3 curve for more than two motors. 

(5) Determine a criterion for grouping similar induction machines 

into a single unit. 

Part III. Model verification 

In this part, the single equivalent model will be simulated and 

compared against other modeling techniques in the following steps: 
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(1) Simulate the single equivalent model of two induction motors 

and compare against the summation of responses obtained from 

simulation of the two individual motors. 

(2) Repeat step (1) for more than two induction motors. 

(3) Compare with other models. 

(4) Set up an experiment for starting two induction machines and 

compare the experimental results with results from the single 

equivalent model. 

Part IV. Model application 

A small power system which supplies a group of induction motors as 

part of the load will be specified. A three phase fault will be placed 

on one of the buses in this system. The voltage, power and reactive 

power at the induction motor load bus will be monitored and will be com­

pared with the same system having the same prefault condition but using 

a different load representation. 

Voltage dip simulation on a small distribution system will be per­

formed and the results obtained from the reduced model will be compared 

with the results obtained from a detailed analysis of each machine. 
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CHAPTER II. INDUCTION MACHINE EQUIVALENT CIRCUIT AND RELATED 

PARAMETERS AND EQUATIONS IN THE DYNAMIC AND STEADY STATES 

The development of the equivalent circuit for three-phase induction 

motors assumes that balanced alternating three-phase currents are sup­

plied directly to the stator windings which induce currents in the rotor 

winding. These currents in the stator and rotor windings create a 

revolving magnetic field in the stator as well as in the rotor. Inter­

actions of the stator and rotor MMF wave give rise to a unidirectional 

torque. The electromechanical performance can be modeled by an equiva­

lent circuit for the machine. 

Figure 2.1a shows the well-known equivalent circuit of the induction 

motor and Figure 2.1b is an approximate representation, where the magne­

tizing reactance is moved to the supply side of the stator parameters. 

Rj^ and R^ are the stator and rotor effective resistances respectively, 

and and are the stator and rotor leakage reactances respectively. 

X^ is defined as the megnetization reactance, and S is the slip. The 

equivalent circuit shows that total power transferred across the air-

gap from the stator is given by equation 2.1; 

2 ̂ 2 
V = -r (2-1) 

where q^ is the number of stator phases, and I^ is the rotor current. 

The internal mechanical power P developed by the motor is given by 

P = (l-S)Pg^ . (2.2) 

The internal electromagnetic torque T corresponding to the internal 
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Figure 2.1. Steady-state equivalent circuit of a three-phase induction 

motor 
(a) Circuit diagram of a three-phase induction motor 
(b) Approximate circuit diagram of a three-phase induc­

tion motor 
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mechanical power P can be obtained by recalling that the mechanical 

power equals the torque times the angular velocity, co^ is defined as 

the synchronous angular velocity of the rotor in mechanical radians 

per second. 

P = (1 - S) WgT . (2.3) 

The internal electromagnetic torque T, the synchronous velocity 

ojg and the rotor angular velocity to, are expressed in the following 

equations : 

T - Si =2 IT (2-4) 
S 

4TT fg 

^s number of poles (2.5a) 

w = (1 - S)wg (2.5b) 

where f^ = frequency of stator voltage and current. 

Maximum Torque 

Using the Thevenin's equivalent method, we can reduce the induction 

motor equivalent circuit of Figure 2.1a to a new configuration, as shown 

in Figure 2.2. 

The Thevenin voltage and the Thevenin impedance R^+jXj^, and 

the internal electromagnetic torque expressions are given in the follow­

ing equations: 

R]^ + jX| = (R^ + jX^^)| I (jXj (2.6) 
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la 

Figure 2.2. Thevenin equivalent of the induction machine equivalent 

circuit 

Via - Va, iÇTT(^rxT-

T - i  ;  .  » • «  

"s (R^ + + (Xj + 

By the impedance matching principle in circuit theory, this in­

ternal electromagnetic torque will be maximized when the impedance of 

Rn 
equals the magnitude of the impedance between it and the constant 

voltage or at a value of slip for which 

R2 

^maxT 

R'2 + (xj^ + x^g)^ . (2.9) 

The slip, at maximum torque is therefore 

• W - -
* (4. + 

and, from equation 2.8, the corresponding torque is 
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1 -sq, 'L 
- ; : • (2-11) 

s ni 
Ri^ (Xi + X;;): 

Normalizing torque by its maximum value, we will arrive at the 

following approximate relationship: 

f g % ̂ • (2.12) 
max • ° , ^maxT 

®maxT S 

Deep Bar Induction Machines 

Modified equivalent circuit 

The starting torque of an induction motor is dependent on the rotor 

resistance. Starting torque normally increases with the rotor resist­

ance when all other parameters are constant. To improve the starting 

torque of induction motors, the rotor bars on squirrel cage induction 

motors are often designed so that their effective resistance of 60 Hz 

is several times their resistance at 2 or 3 Hz. The rotor resistance 

varies with speed because at standstill, the rotor frequency equals the 

stator frequency and as the motor accelerates, the rotor frequency 

decreases to a very low value, about 2 or 3 Hz at full load in 60 Hz 

motors. 

Because the effective rotor resistance of a deep-bar or double 

squirrel cage rotor varies with frequency, the parameter R,, the referred 

effect of rotor resistance as viewed from the stator, is not constant. 

Therefore, the simple equivalent circuit shown in Figure 2.1a still 
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correctly represents the motor except that now the rotor resistance is 

a function of slip. A cage factor can be included that approximates 

the variation of rotor resistance. 

Rj. - R2(1 •+ Kdb S) (2.13) 

where 

R2 = rotor dc resistance; 

S =• slip; and 

R^ = rotor resistance. 

The equivalent circuit of an induction motor with a deep-bar rotor 

is shown in Figure 2.3, where R^ denotes the variable rotor resistance 

and other symbols have their usual meanings. 

\ Hz 
vv\ nnn——rm 

+ I 

V n 
as 

Figure 2.3. Induction motor with deep-bar rotor 

Torque expression for the modified 
equivalent circuit 

When torque and power relations for the induction motor are needed, 

considerable simplification results from the application of Thevenin's 

network theorem to the above equivalent circuit as was done before. 

Thevenin's impedance can be calculated to be 
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V 
la 

R i  +  j X i  =  ( R i  + I  (2.14) 

Ri + 

(%l + j%tl)(jXm) 

^1 + V 
(2.15) 

AAAr 

^1 

sm rm 

Figure 2.4. Thevenin equivalent circuit of a deep-bar induction motor 

By the impedance matching principle between Thevenin's impedance 

and rotor resistance, we'll have 

maxT 
+ (XÎ + XA2)^ (2.16) 

Substituting from equation 2.13 will result in 

*2(1 + '^dbW 

^maxT 

R'2 + + 

Then for a deep-bar rotor can be obtained by 

(2.17) 

maxT 

Sj: + (%i + X&2) - Kdb*2 

(2.18) 

To determine the value of maximum torque, we can write the equation 
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for torque as 

l̂a ("f) 91 

+ (X^ + X^g)^ "'s 
C2.19) 

To find maximum torque, we can substitute the value of into equa­

tion 2.19 and obtain the expression for maximum torque 

2 
.5 Via qi 

T — — (2.20a) 
max • • 

R' + 
0 0 

Rr + (X: +X.J 
1 J 1 ' l"^£2^ 

The above equation shows that maximum torque will remain the same for 

any induction motor (i.e., squirrel cage or deep-bar rotor) because 

the value of maximum torque is independent of the rotor resistance. 

The maximum power expression can be found by substituting equation 2.20a 

into equation 2.3: 

Pnax - (2.20b) 

4 + 4^ + (Xl + %%2)' 

Mechanical Considerations 

The dynamic behavior of an induction machine is influenced by 

mechanical as well as electrical properties of such machines. The 

electromechanical equation of motion for an induction motor is given by 

equation 2.21: 

• (2.21) 

In the above equation, all motor quantities are expressed in p.u. 

except the time (t). 
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H, the inertia constant in seconds, is the inertia of the rotor 

and the connected mechanical equipment. T^, the accelerating torque, 

is given by equation 2.22; 

T = T - T (2.22) 
a e m 

T = T (2.23) 
mo 

where 

= electrical torque; 

= mechanical torque; 

= mechanical load torque at synchronous speed; and 

a = exponent for mechanical load model. 

Equation 2.21 can be written in the integral form as expressed in equa­

tion 2.24: 

r S  
t = -2H . (2.24) 

, T - T 
le m 

Run-up time calculations 

In this part of the research, a series of expressions and equations 

to calculate the run-up time for an induction machine will be developed. 

To obtain these expressions, there are two cases to be considered: 

(1) Machine start-up under noload. 

(2) Machine start-up under load. 

Machine start-up under no load In this case, the mechanical 

load torque is zero and equation 2.24 is reduced to 
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rs ds 
t = -2H ^ (2.25) 

j1 

Substituting internal electromagnetic torque T for from equation 2.12 

and simplifying gives 

f S  

t.-ir!—(' ' 
2 T S ^ 

max maxT 

S ds + S 
2 maxT 

^ ds. 

1 ^ '  

t - - jf- (rf— - 1) + "nS) (2.26) 
max maxT 

where t is the time for the machine to reach a certain slip S. 

Machine start-up under "load The derivation of run-up times should 

also include consideration of the Idad. Referring to,the electromechani­

cal equation of motion, equation 2.21 

mechanical torque can be expressed as a function of slip by equation 

2.27. 

Tm - - S)" • (2.27) 

Substituting equation 2.27 into equation 2.21 gives 

-2H f - T„(l - S)" 

-2H^ = - MX - T (1 - S)" . (2.28) 
^maxT S 0 

^ ^maxT 

Simplifying equation 2.28 in the following steps results in 
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« • » ' - '•» • 
® ^maxT 

is = _ A. r^SmaxT '^max^ _ » n - s)°l 
dt 2H '• ^2 ̂  ̂ 2 ^0^ ^ ̂ 

maxT 

ds 1 W : - To(l - S>° + sLl\ 

dî - - 2ÏÏ ' 377 1 
^ + ̂ maxT 

dt = +2Hds[ _ ^ 2 ] . (2.29) 

To(l- S) (S + ̂ wua) - ZTmax SmasT ^ 

Integrating both sides of equation 2.29 will give the general integral 

form for calculating the explicit run-up time. 

t = 2H 

1 I„(l-s)«(s2 + - 21^^ 

In order to find the time required for any induction motor to 

reach a slip of S, one has to integrate the expression given in equa­

tion 2.30. The method of solving such problems is partial fraction 

expansion. This requires calculating the roots of the denominator. In 

general, Newton's method (outlined in Appendix A) is the best available 

method to find these roots. In most practical cases, a can be approxi­

mated by one of the three values 0, 1, and 2. Therefore, an explicit 

expression to calculate the time to reach any speed for the above-

mentioned practical cases (i.e., a = 0, 1, 2) will be developed. 
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Case I In this case, a = 0. Substituting a = 0 into 

equation 2.30 results in 

t = 2H 
S (S^ + ) 

y ^ ds . (2.31) 
1 T_(S^ + S J - 2T S S 

0 maxT max max 

Equation 2.31 can be rewritten in a new form as 

, TmaxSmaxT „ 
s 2 T S 

(1 + ^ ) ds , (2.32) 

1 max max _ , _2 

^ ^ T. ^ ^maxT 

The denominator of equation 2.32 is a quadratic equation and its A is 

found to be 

A = 4 - 4 
T 2 maxT maxT 
^0 

' T^ 

A - 4 - 1) > 0 . (2.33) 

"^max' maximum torque of an induction motor, is always greater than 

TQ. Therefore, A is always greater than zero. The roots of the quad­

ratic equation are real numbers and can be calculated as follows : 

T S 
o c _ max maxT + 

2 - " • «.34) 

To integrate equation 2.32, the partial fraction expansion method is used. 
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where A and B are given in equations 2.36 and 2.37 

2T S 
max max g 

]o_ 2 

'1 - ^1 

The closed form equation for t is 

T "1 

^ = Si - S2 (2-3*) 

^^max^max G 

B = S. - S. • (2.37) 

9T1 c2 C 
t = [-y + A£n(S-S^) + BAnfS-Sg)]* (2.38) 

or 

2H S 2 1 
t = Y" [-y + A£n(s - S^) + B£n(S - S^) - ̂  + A&n(l - S^) + B%n(l - S^)] . 

(2.39) 

The time to reach any slip ̂  can then be found by equation 2.40. 

2 H  1 ?  S  —  S ,  .  S ~ S « i j  
t = ̂  [f(S^ - 1) + Jln((—^)^ X (z—^)^)] . (2.40) 

Tq 2 1-S^ l-Sg 

Equation 2.40 is an expression for the run-up time of an induction motor 

under constant mechanical load torque (i.e., a = 0). 

Case II In this case, a is equal to 1 and mechanical 

torque is 

T^ = Tq(1-S) . (2.41) 

Substituting a = 1 in equation 2.29 gives 
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dt = 2H ds[ 
+ CxT 

io(i-s)(s2 + 'Ll> 2T S S 
max maxT 

(2.42) 

Integrating both sides of equation 2.42 and simplifying equation 2.42 

results in 

t = 2H 

-T« 
1 s' - + S^,s -

ds . (2.43) 

0 

The denominator of equation 2.43 is a cubic function and has three real 

roots which can be found by Kardan's formula. 

(2.44) 

p3 . (2 ZasfMS H. -A 

2T Q 
-2 . / max maxT\ 2 „2 

"-27* ) - 3 Va 
0 

M= 3 -q/2 + p^/27 + q^/4 

N = \ -q/2-, p^/27 + q^/4 

Then, three roots of equation 2.44 can be calculated as follows: 

= M + N 

M+N , MHN 

2 
S„ = - ^ 

(2.45) 

(2.46) 
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S 3  =  - ^ - ^ v C 3  .  ( 2 . 4 7 )  

3 2 
When -^ + -^ < 0, these will be three real roots. Equation 2.43 can 

be rewritten as 

5 

^ •*" S-Sg S-Sg) (2.48) 

where 

S? + 

8% + 

B = fc _c wTS  ̂ (2.50) 
(S2-S1)(S2-S2) 

(83-83^) (S3-S2) 

Integrating equation 2.48 results in 

So + 8^ 

C = TTT^-TTf^li-T • (2.51) 

S 
"•2H 

t = -=;r-'(A5,n(S - 8,) + B£n(8 - s.) + CJln(8 - 8-)) | . (2.52) 
0  - ^ 1  

The time for an induction motor to reach a certain slip ̂  when 

the mechanical load is linear (i.e., a = 1) is 

t = ̂  ̂n[(-^)^ X (gi)^ X C-^)^] (2.53) 
Iq X J.  J. ^3 

Case III (g = 2) Mechanical torque T^ is represented as 

T = T^(l - 8)^ . (2.54) 
m u 

8ubstituting a = 2 in equation 2.29 results in 
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dt = 2Hds [• ds] (2.55) 

In this case, one can find the roots of a fourth order equation and use 

partial fraction expansion to develop an explicit time equation for the 

motor to reach any slip. But, with certain simplifications, this case 

could be converted to a cubic equation. For most induction motors, 

S _ is less than 0.1. When S m is raised to the second power, one 
maxT maxT 

2 
could neglect S ^ in equation 2.55. Integrating both sides of the 

equation results in 

t = 
2H 

rS 

^ (I_s2)(s2) - 2 ̂ max^maxT g 

ds (2.56) 

0 

t = 2H 
rS 

-T 0 1 g3 _ g + 2 \ax^maxT 

^0 

ds (2.57) 

In this case, the denominator of equation 2.57 has three roots that can 

be found by the special case of the Kardan formula. 

M = 3 

\ 

T S 
max maxT 

T S . -
, max maXxZ 1 

^ Tq ' ~ 11 
(2.58) 

N = 2 

M 

T S 
max maxT 

T S 
/ max maxT\2 1 

(2.59) 

= M + N ( 2 . 6 0 )  
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+ (2.61) 

+ .  (2 .62)  

The condition to insure the existence of ̂  real roots is satisfied 

when 

^Wmaxl)2 . (2.63) 

Then the integral of equation 32 will be 

r S  

^ (s-s^ S-Sg S-Sg) (2.64) 

where 

A " (Si-SgifSi-S,) (2.65) 

^ (Sg-SiifSg-Sg) 

^ (33-8^(83-82) • (2.67) 

From equation 2.64, the time to reach any slip s, when a motor starts 

under load with a = 2, will be 

c - f )"(ff • «.68) 
Tg 1-Si I-S2 I-S3 

Equation 2.68 is an expression for the time required for an induction 

motor to reach any slip 8 when a -  2 .  
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Run-up time expressions for deep bar 
induction motors 

All of the explicit time to reach any speed equations developed in 

the previous sections can be used for a motor with a deep-bar rotor. The 

only difference is that motors with deep bars will have different S 
maxT 

values. By substituting the deep-bar motor value calculated from 

equation 2.18, the time to reach any speed for an induction motor with a 

deep-bar rotor can be calculated. 

Mathematical Developments for Calculation of Operating 
Speeds Under Different Load Conditions 

In order to find the operating speed of an induction motor under a 

certain load, one must equate the electric torque to mechanical load 

torque as shown in Figure 2.5. 

steady-state 

\ operating point 
electrical 
torque 

a* 

mechanical loa 
torque 

0 1 
Speed (per unit) 

Figure 2.5. Electrical and mechanical torque characteristics 
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Recalling equations 2.12 and 2.23 and equating them results 

in 

2T 

= T-(l - S)" . (2.69) 
f ^ m a x T  ®  

^maxT 

Equation 2.69 can be simplified to 

2T S 
(S^ + S^^xT)(l-Sy* max^maxT g = g , (2.70) 

Equation 2.70 is a general expression used to find the operating slip 

under any given mechanical load conditions. To find the root of equa­

tion 2.70, it should be noted that the only acceptable solution occurs 

when the S value is between zero and S Using Newton's method to maxT 

solve for S with an initial slip of S^^^/2 will result in a very rapid 

convergence and the slip can be found with sufficient accuracy within five 

iterations. Application of Newton's method is outlined in Appendix A. 

As previously discussed, in most practical cases a can be approxi­

mated by one of the values 0, 1 and 2. The following sections develop 

explicit expressions to find the operating speed for these three cases. 

Case ̂  (g = 0) 

By substituting a = 0 in equation 2.70, S may be determined in 

the following steps. 

2T S 
3 2 -  max^maxT 3 ̂  32^xt = 0 (2.71a) 
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+T S _ 
max maxT 4. ^\ax®maxT^ „2 

Î2 W • (2.71b) 
0 

Only a positive root close to zero is acceptable. 

Case II (g = 1) 

Substituting a = 1 into equation 2.70 results in 

2T S 

(S^ + S^axT)(l-S) S = 0 (2.72a) 

Equation 2.72a can be simplified to 

s3 _ s2 ̂  ̂  Wma:a + S^)S - - 0 . (2.72b) 

The above equation is the same as equation 2.44, and the method 

of calculating its roots has already been outlined. Again, the only 

acceptable root is positive and close to zero. 

Case III (g = 2) 

Substituting g = 2 into equation 2.70 and solving the equation 

results in 

2T S 

(s' + slxr'd - s)' - s = 0 

2T S 
- 2s3 + (1 + S^^)s2 - (_as^ +2S^^)S + . 0 . (2.73a) 

Equation 2.73a is in the form of 

S^ + aS^ + bs^ + cS + d = 0 
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where 

a = -2 

» - (1 + 

= = H. Ŝ ,) 

• W 

which has the resultant cubic equation 

- by^ + (ac-4d) y + 4bd-c^ = 0 (2.73b) 

Let y be any root of this equation; then. 

R = - b + y (2.73c) 

If R 0, then 

D = 

E = 

^ . r2 . 2b + 4ab-8c-a3 
4 4R 

3a^ „2 ot 4ab-8c-a^ 
_ _ R _ 2b ^ 

(2.73d) 

(2.73e) 

If R = 0, 

D = ^ - 2b + 2 ̂  y - 4d (2.73f) 

E = 3a 
— 2b - 2 y - 4d (2.73g) 

Then 

'1,2 = 

' 3 . 4  = 4 - 2 - 2  

(2.73h) 
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Here again the only acceptable root is the positive root close to 

zero. 

Summary 

In this chapter, the equivalent circuit of an induction motor along 

with the mechanical equations of motion were reviewed. A modified in­

duction machine equivalent circuit to include the effect of deep bar 

rotors was presented. A series of expressions to calculate the run-up 

time and the operating speed of any induction motor under different 

mechanical load torque conditions were derived. These expressions 

are also applicable for an induction motor with a deep bar rotor. In 

the following chapters, these equations will be recalled frequently for 

the development of the single equivalent representation of a group of 

induction motors. 
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CHAPTER III. EQUIVALENT MODEL BEHAVIOR 

This chapter focuses on developing a single equivalent model of 

two induction motors where the parameters of the equivalent model are 

functions of the individual machines' speeds and electrical parameters. 

A series of studies on the performance of the two induction motors under 

various conditions will be shown. These studies assume prior knowledge 

of the separate characteristics (current, torque and speed vs. time) 

of each motor. Individual motor characteristics can be provided by 

the manufacturer or can be found by digital computer simulation of 

each motor with knowledge of their equivalent circuit parameters. 

Methodology 

The steady-state equivalent circuit of a single induction machine 

is widely used to predict the performance characteristics of Induction 

motors and their impact on the power network. The equivalent circuit 

has also been used in studying the dynamic performance of induction 

motors [5]. Since it has been shown to be reasonable to use such a 

circuit representation of each individual motor, it is proposed to use 

this circuit as a basis to develop an equivalent model for a group of 

induction motors. 

Two machine representations (electrical parameters) 

Consider a set of two parallel induction motors that are supplied 

from the same infinite bus, as shown in Figure 3.1. Substituting an 

equivalent circuit for each individual motor of Figure 3.1 yields the 
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Infinite bus voltage 

Figure 3.1. Two parallel induction motors 
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circuit shown in Figure 3.2. is the bus voltage and all parameters 

of each motor equivalent circuit of Figure 3.2 are given in Table 3.1. 

The resistances representing core losses are neglected. The motor 

parameters are referred to a common base and the magnetizing branches 

are moved to the supply points to facilitate deriving an equivalent 

model, as shown in Figure 3.3. and represent the total leakage 

reactance of each motor. 

Electrical parameters of the single 
equivalent model 

The proposed model of two induction motors is shown in Figure 

3.4, where and represent the equivalent stator and rotor resist­

ance, respectively. In the equivalent model, the leakage reactance 

x/B and the equivalent slip are not constant and will vary as a func­

tion of the individual machines' speeds and electrical parameters. 

The terms "stator" and "rotor" are used when referring to the 

equivalent model. Although the model is not an actual machine, refer­

ring to the "stator" and "rotor" of the equivalent model helps in the 

analysis and allows a straight forward derivation of the equivalent 

model's parameters. The equivalent magnetizing reactance is given by 

To obtain other equivalent model parameters, the circuits of 

Figures 3.3 and 3.4 must be electrically equivalent, for both stand­

still and running conditions. Under running conditions with individual 
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*sl *rl rm 

rl 
ml 

as 

Machine #1 

s 2 nm 

m2 

Machine #2 

Figure 3.2. Two parallel Induction motors represented by their 

equivalent circuits 
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Table 3.1. Electrical parameters of machines #1 and #2 

Stator quantity Rotor quantity 
Magnetiz­

ing 
reac­
tance 

Motor Slip 

Resistance 

Leakage 

reac­

tance 
Resistance 

Leakage 

reac­

tance 

Magnetiz­

ing 
reac­
tance 

Motor 

#1 Si ^sl *sl ^rl *rl ^ml 

Motor 
#2 ®2 ^s2 =s2 ^2 =r2 \2 
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Figure 3.3. Two parallel induction motors represented by their approxi­
mate circuit equivalent 
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as 

Figure 3.4. Single equivalent model of two induction motors 
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motor slips s^ and s^» equivalence of the circuits of Figures 3.3 and 

3.4 leads to equation 3.2. 

R + 3*1''<^32 + jXz' 

("s f ' ̂  J f FT n 
+ 's2 + ir;-) + 

where : 

Rg = equivalent model stator resistance; 

= equivalent model rotor resistance; 

X = equivalent model leakage reactance; 

3 = equivalent model leakage reactance coefficient; and 

S = equivalent model slip. 

Separating the real and imaginary components of both sides of equation 

3.2 will result in equations 3.3a and 3.3b. 

(fsl ^s2 (fsl (rs2 + 4(::sl+^) + 4<-s2 

('si + + ̂ 32 + + (Xl + X2)^ 

ACs^.s^) (3.3a) 
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" • 
(3.3b) 

For the standstill condition, substitute s^ = Sg = S = g = 1 in equa­

tions 3.3a and 3.3b. This results in 

, _ ^^sl + ̂rl + "^2+ 'rz) (^sl + 'rl) ̂^s2 + =^2)+ 4 (^sl + ̂rl^ + 4 (=82 + ̂ 2^ 
[(r8l + :rl + =82 + rr2)^ + 

(3.4) 

(^sl-^^rl^S + ('82 + rr2)^*l + ̂ 2(^1 + ̂2^ ^3 3^ 

[(=sl + rs2 + rrl + rr2)^ + (%l+%2)^] 

where : 

R = R + R_. 
s r 

An expression which approximates the relationship between R^ and 

R^ is given in equation 3.6. This expression divides the rotor and 

stator resistance according to the individual ratings of each motor. 

" ^^1 + VA2 

where VA^ and VA^ are volt ampere ratings of machine #1 and machine #2, 

respectively. 
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Equations 3.1, 3.4, 3.5 and 3.6 will provide the electrical parameters 

of the equivalent model at standstill. 

Comparing equations 3.3a and 3,3b with 3.4 and 3.5 leads to the 

following expressions for the equivalent slip S and the variable 

coefficient 1/3 of the equivalent leakage reactance. The mathemati­

cal speed limit of the equivalent model is given in Appendix C. 

Rr 

A(ai,S2) - Rg 

B(s^,S2) 

(3.7) 

(3.8) 

Motor mechanical load representation 

The concept of conservation of mechanical energy is used in find­

ing the torque speed characteristics of the equivalent mechanical load. 

Assuming the usual exponential relationship between load torque T^ and 

speed 0) gives 

T = T u" (3.9) 
m o 

where : 

T^ is a constant and is defined as the load torque at synchronous 

speed; 

(0 is the rotor speed; and 

a is defined as the speed exponent of the load torque. 

Since the output mechanical power of the equivalent model must be 
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equal to the sum of the output powers of the individual motors, the 

following expression may be written: 

• (3.10) 

Tqi' "i' '^02 "2 known constants defining the individual motor 

loads and and are per unit motor speeds. 

Tg, the load torque, and a, the speed exponent of the equivalent 

models, are given in equations 3.12 and 3.13. 

•'o - % + ̂ 02 

« = (Toi + :02 - 1 (3-13) 

Qualitative Analysis of Variable Leakage Reactance 

One of the characteristics of the equivalent model for a group of 

induction machines is its variable leakage reactance, y • In this 

part of the research, the variation of the leakage reactance coeffi­

cient 3 will be studied in order to determine the effects of individual 

machine parameters which influence this parameter. 

There are two cases to be considered for such analysis: first, 

simultaneous starting; and second, nonsimultaneous starting. 

Case %: Simultaneous starting 

In this case, three sets of two parallel induction machines were 

selected. Each machine was separately simulated (the simulation method 
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is explained in Appendix E) and the slip, current, and torque vs. time 

of the individual machines were recorded and are shown in Figures 3.5-

3.8. 

It was shown previously that the equivalent model parameters of 

two induction motors are a function of each machine's individual electri­

cal parameters as well as its slip. For each pair of machines to be 

grouped together, the equivalent electrical and mechanical parameters 

were calculated using the equations which were developed in this chapter. 

The equivalent parameters of each pair of motors along with recorded 

values of slips were used to obtain the equivalent model's characteris­

tics (i.e., slip, leakage reactance coefficient, current and torque vs. 

time). 

The current vs. time and torque vs. time graphs shown in the (b) 

and (c) parts of Figures 3.5-3.8 follow the expected pattern. The cur­

rent drawn by the equivalent model is shown to be equal to the vector sum 

of the two individual motor currents. The current curve is a double 

stepped curve, with each step representing the attainment of steady-state 

speed by one machine after another. The torque curve of the equivalent 

model is also shown to be the sum of the two individual motor torques. 

The leakage reactance coefficient 3 given by equation 3.8 was ana­

lyzed for a variety of conditions. The general characteristics of the 3 

versus time curve can be seen in Figures 3.5-3.8 part (a). The value of 

S remains nearly constant for the initial part of the curve, then changes 

rapidly to a new value, and finally returns rapidly to a final value 

near 1.0. The parameters of the simulated machine are given in Table 5.1. 
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The cuirves obtained from the 1000/2500 hp combination of motors are 

enlarged in Figure 3.9. The separate torque time relations are included 

because they throw light on the nature of the g coefficient. It should 

be stated here that the separate simulation of each machine is used only 

for analyzing the nature of the reactance coefficient and will not be 

needed once the model is developed. It will be shown that the reactance 

coefficient g can be defined by a relatively simple general expression, 

and two machines can be fully represented by the equivalent model. 

Figure 3.9 shows the plot of the beta coefficient for two dissimilar 

machines as they start simultaneously under no load. The changes in g 

are related to the individual torque and slip variations, with the lower 

value of g being applicable from the time the first machine attains 

steady-state speed to the time that the second machine approaches its 

final speed. It is also seen that the first point of inflection in the 

curve occurs at or near the instant the first machine reaches breakdown 

torque. The rate of change of g is thus related to the interval from the 

time t^^ that machine one takes to reach maximum torque to the time tg^ 

that machine one takes to reach steady-state speed. This interval is 

clearly related to the rotor resistance as the slip of maximum torque in­

creases linearly with rotor resistance. 

Figures 3.10 and 3.11 verify that, as the rotor resistance is in­

creased, the beta coefficient variation becomes more trapezoidal than 

rectangular, but the correlation between the beta changes and t^^^ and tgj^ 

indicated above remains essentially valid. As a direct consequence of the 

increased rotor resistance, the run-up times are reduced because of the 
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higher starting torque, and the lower value of 3 has changed. It will be 

shown later in this chapter how the g values vary with rotor resistance. 

The beta coefficient variation may be approximated by either a trap­

ezoidal or rectangular shape, as illustrated in Figure 3.12. The choice 

of approximation depends on the degree of simplification desired. The er­

ror in using the rectangular form is least for low slip machines. These 

machines are often more important from a practical point of view because 

of their higher starting currents. In Figure 3.12c, the minimum value of 

the coefficient, gg* ni^y be derived as s^ approaches 0 in the expression 

for beta given in equation 3.14. In the process of deriving the limit, it 

is seen that is independent of the slip of the second machine Sg. 

After simplification, this gives 

2 2 
(fsl + frl) + (rs2 + rr2) + 

3 = — . (3.14) 
(rsi + rri + rs2 + rr2)^ + (XI + X2)2 

The final value of the reactance coefficient, gg, may be derived by tak­

ing the limit as Sg ^ s^ + 0. This gives 

„ (rrl + rr2)^[(rsi + rri)^X2 + (rg2 + rr2)^xi + XIX2(X3^ + X2)] 
P o  9  n  O  O  •  ( 3 * 1 5 )  

(rriX2 + rr2Xl)[(rsl + rrl + rs2 + rr2) + (x^ + xg)^] 

The expression for g^ gives a value very close to 1.0 for most 

practical machines. The model may be simplified by setting g^ to 

1.0 with very little error. The procedure to calculate g^ using the 

limit approach will become more complicated as the number of machines 

increases. However, another approach will be adopted which involves much 

less computational effort. 

Considering the two machine case of Figure 3.4, the total current 
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drawn by both machine 1 and 2 remains substantially constant during the 

starting period until the first machine reaches maximum torque. At this 

point, the current drops sharply. This is the same instant that the 

leakage reactance coefficient 3 changes from 1.0 to gg- In view of this 

correspondence between the current changes and the g variation, the 

value of $2 derived in terms of the current ratio. 

|I2| 
lll+'izt • (3.15) 

This current ratio is a constant for any pair of machines since and 

Ig are taken at their starting values with s^ = Sg = 1. K will be a 

function of the equivalent circuit constants of the two machines only. 

After some simplification, it can be shown that 

K - + (3.16) 

II1 + I2I (Zgi + fri) + (^sl^^rl)(^s2*^r2) ̂  

If the same current ratio is derived using the equivalent circuit of 

the model of Figure 3.4, it can be seen that 

II2I 4R2 + 

I, +I 
1 2 '  

2 1 2 
R + (1 + -g) + ̂  

(3.17) 

= K . (3.18) 
^ x2 + R2[4-K^(l-^)2] 

Except for machine pairs having similar inertia constants, the equiva­

lent slip S is not near zero at the time t^^, and the radical in the 

denominator is approximately equal to %. The exception is of little 
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consequence since, for such a case, the S coefficient is practically 

constant throughout the starting time of both machines and equal to 

one. 

Therefore, the value can be approximated as 

l lgl 
^2 = III + 1,1 = ^ • (3.19) 

Although this value is extremely close to the 3 value found by 

equation 3.8, it assumes that the machine number one current falls to 

zero when it reaches its operating point. We can improve this approxi­

mation by including the value of the operating current of machine 

number one into the expression. The machine number one slip will not 

go to exactly zero, but reaches some steady state value. At this slip, 

the motor will draw current of a magnitude that depends on its loading 

condition. The new expression for gg is 

lij + 

= TvTT^ (3-2°) 

where i^ is the steady state operating current of machine number one. 

To calculate times t^ and t^ of Figure 3.12, we will use the equa­

tions which were developed in the previous chapter to calculate the 

run-up time for each individual motor. When the two machines have 

widely different inertia constants, the resulting variation of the 

reactance coefficient reflects that. Also, if two other motors with 

equal inertia constants are considered, then it would be expected'that 

the run-up times t^ and t^ will not be very different. This is 
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verified in Figures 3.7 and 3.8 where the g variation all but dis­

appeared. Neglecting the variation in the leakage reactance of the 

model will introduce little error in the case of machines of equal or 

nearly equal run-up times. 

Case II; Nonsimultaneous starting 

Deriving the model of two motors starting at different times pre­

sents no problem since g^ and g^ as given by equations 3.14 and 3.15 

are functions of equivalent circuit parameters only. These two values 

of the reactance coefficient will remain unchanged regardless of dif­

ferent starting times. The value of t^ and tg in Figure 3.12 must, 

however, be adjusted to take into account the time lag At in starting. 

Thus, if machine number one is delayed, then t^, as obtained from the 

run-up time equations developed in Chapter II, must be increased to 

t^ + At. Similarly, the run-up time for machine number two must be 

increased to t^ + At if it is the motor whose starting time is delayed. 

This can be verified by inspection of Figure 3.13 where the 1000 hp 

motor is delayed by 0.3 sec., and of Figure 3.14 where the 2500 hp motor 

is similarly delayed. In comparison with the base case of Figure 3.9 

where tg - t^ is 0.53 seconds, the interval is 0.23 seconds in Figure 

3.13 and 0.83 seconds in Figure 3.14. The magnitude of gg will remain 

the same for all three cases of Figures 3.9, 3.13 and 3.14. 

Summary 

A model based on the equivalent circuit with variable electrical 

parameters has been developed to represent two three-phase induction 
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motors connected to the same bus. The model uses the concept of a 

variable leakage reactance, an equivalent slip, and an equivalent 

inertia constant. In the next chapter, this method of equivalency 

will be expanded for a group of several three-phase induction motors 

to determine an equivalent single representation of such a group. 
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CHAPTER IV. SINGLE EQUIVALENT REPRESENTATION 

OF A GROUP OF INDUCTION MOTORS 

In the previous chapter, a single equivalent model of two parallel 

induction motors was developed. In practical power systems, there are 

often a number of induction motors which are supplied from a common 

bus. Thus, the procedure used for the case of a two motor group needs 

to be extended to obtain the parameters of a single equivalent model of 

more than two induction motors supplied from the same bus. This single 

equivalent model of a group of induction machines will be valid over 

the whole speed range (i.e., standstill to the full load condition). 

The method which was developed to calculate the single equivalent 

model parameters is presented here. 

Single Equivalent Model Electrical Parameters of a 
Group of Induction Motors 

The standstill equivalent circuits of the individual machines are 

simplified by moving the magnetizing reactances to the terminals of 

the machines as shown in Figure 4.1a. If one first assumes that no 

deep bar rotor effects are present, then the resistance value of each 

machine R^ (i.e., subscript i denotes the ith machine) is simply the 

series combination of the stator winding resistance and the rotor re­

sistance. The electrical parameters of the single equivalent model are 

obtained by making the circuits in Figures 4.1a and 4.1b electrically 

equivalent. The n machine equivalent model parameters are determined 

by 
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(R + jX) + jX^ + Rg + jXg ^ \ ^ (4.1) 

X = (3^ + -^+ ... +-^)"^ . (4.2) 
™ V \2 V 

Then the equivalent resistance R is separated into an equivalent 

stator and rotor resistance by weighting the stator and the rotor 

resistances of the individual machines using the machine power rating 

as given by equations 4.3 and 4.4. 

R = RG + RF (4.3) 

* I. OUi) 
i=l "• 

The resulting circuit is shown in Figure 4.1c. 

Single Equivalent Model Including Deep Bar Effects 

In order to include the deep bar effects, a linear relationship 

between the rotor resistance and slip is assumed resulting in a varia­

ble rotor resistance [3] 

\db = "r'l + <4.5) 

where: 

K,, = deep bar effect linear constant, and 
db 

s = slip of the equivalent motor. 
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K may be found by calculating the equivalent locked rotor resistance 
du 

using equations 4.1, 4.3 and 4.4 with the locked rotor (s^ = 1) 

resistance values of the individual motors. 

Kdb = - 1 (4-6) 
r 

where : 

= equivalent locked rotor resistance. 

Figure 4.2 is the final single equivalent model of n parallel induc­

tion machines. 

Analysis of the Leakage Reactance Coefficient for a 
Group of Induction Motors 

For the case of two machines, an approximate method to obtain the 

magnitude of the leakage reactance coefficient was proposed. This 

method can be extended to be applicable to a group of induction 

machines. Consider the case of three machines. As one machine after 

another approaches steady-state speed, the resulting reactance coeffi­

cient can be approximated by the stepped function of Figure 4.3. The 

required times for each of the three machines to accelerate to the 

speed at its maximum torque are designated on the graph of Figure 4.3 

as t^, tg, and t^. These periods of time can be calculated from the 

run-up time expressions developed in Chapter II. The magnitudes of 

leakage reactance coefficient 3^^, gg and 3^ are computed from the 

appropriate current ratios the same as for the two machine case. 

Thus, 
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e, = 

3 

I I 
m=l 

3 

I I 
m=l 

m 

m 

= 1 (4.7) 

3„ = 

3o = 

112 + I3+ ill 

I1+I2+I3I 

(4.8) 

(4.9) 

e,  = 1 

In the above equations, I is defined to be the current of the mth 
in 

machine at the instant of start when s =1. i is the steady-state 
mm 

current of the mth machine. 

Therefore, for the case of n machines, the leakage reactance 

coefficient will be a multi-stepped function, as shown in Figure 4.4, 

and the magnitude at each step can be found by 

n 

I 
i=m i=l 

m-1 

J  h  *  J ,  h  

n m = 2, 3, (4.10) 

«1 • «n+l " 1 (4.11) 

Mechanical considerations of the single 
equivalent model 

The equivalent model mechanical parameters are modeled by the fol­

lowing equations [8] 
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I H (VA ) 
i=l 

H = ̂  (4.12) 

E (VAi) 
i=l 

where ; 

= inertia constant (sec) of ith machine; 

VA^ = volt amper rating of ith machine; and 

H = equivalent inertia constant (sec). 

The mechanical torque load of the equivalent model is assumed to 

have an exponential form 

\ - Tq (4-13) 

where: 

T^ = mechanical torque on the motor shaft in per unit; 

Tg = load torque at synchronous speed; 

to = motor speed in per unit of synchronous speed; and 

a = speed exponent for mechanical torque model. 

The equivalent mechanical load parameters TQ and a can be calculated 

by using equations 4.14 and 4.15: 

To = j/oi (4-14) 
1=1 

I T 
a = log^r"^ TQ ] - 1 • (4.15) 

Criteria for Grouping Similar Motors 

In this chapter, a method of combining a group of induction motors 

has been presented. However, in studies involving motor load 
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representation for large networks, substantial computational effort could 

be saved by dividing n number of motors into m similar subgroups of 

motors. The equivalent model for each subgroup can be determined using 

the technique which was developed in this chapter, with the equivalent 

model of each subgroup of induction motors having a constant leakage re­

actance. All similar subgroups of motors are then combined using the 

same method which was previously explained to obtain the single equiva­

lent model for the group of n induction motors. This single equivalent 

model of the group of n motors will then have a variable leakage reac­

tance with m-1 different calculated values instead of n-1 values. 

The main criteria used to determine the similarity for any group of 

motors are the individual motors' run-up times. Therefore, any number of 

induction motors, regardless of their sizes and ratings, which have the 

same or nearly the same run-up time, can be put in the same similar sub­

group. The equivalent parameters of the similar subgroup model can be 

found without detailed calculation of the variable leakage reactance 

coefficient because the coefficient would have little or no variation with 

respect to time. 

In addition to run-up time, another criterion for establishing simi­

lar motor groups is the ratio of the motors' ratings. The reason to in­

clude the ratio of motor ratings as a criterion for grouping similar 

motors is as follows. When two motors have vastly different ratings, the 

characteristics of the bigger machine (i.e., current, power and reactive 

power) will dominate that of the smaller machine, as a result of which 

the smaller machine will have negligible effect on the equivalent group. 
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In practical studies, it is difficult to have two or any number of 

motors with exactly the same run-up times. Therefore, a criterion called 

similarity parameter will be defined and used to recognize similar motors. 

The similarity parameter is defined as follows; 

_ percent difference in motors' run-up times 
ratio of motors' ratings 

The percent difference between run-up times of two motors is defined 

with the smaller of the two run-up times in the denominator. The 

ratio of motors' ratings in the above equation is always taken as the 

ratio greater than or equal to one.• 

In order to calculate the percent errors resulting from grouping two 

machines in a similar subgroup, a number of possible combinations were 

simulated. Each machine's run-up time was varied from 2 to 50 percent of 

a typical 100 hp motor run-up time. Then, the errors in the current en­

velopes compared to the vector summation of the currents obtained from 

the separate simulation of the two motors were calculated. Table 4.1 

shows the error in the inrush current envelope for different run-up times 

and ratings and the calculated values of the similarity parameter. 

A study case showed that for an assumed maximum error tolerance of 

2.5% in the inrush current envelope, the similarity parameter maximum 

limit will be 0.033. Therefore, in order to divide a group of motors 

into similar subgroups using 2.5% as the maximum error, the similarity 

parameters should be calculated for all machine combinations and compared 

against the similarity parameter maximum limit of 0.033. Those combina­

tions of machines with a similarity parameter less than 0.033 can be 

placed in the same similar subgroup. 
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Table 4.1. Current vs. time errors and similarity parameter values 

Percent run-up time difference between pairs of motors^ 
rating 
ratipP 2 4 6 8 10 20 50 

1 0.98 1.92 2.38 3.70 4.36 12.50 16.00 

0.02 0.04 0.06 

2 0.65 1.28 1.88 
0.01 0.02 0.03 

3 0.49 0.96 1.40 
0.006 0.013 0.02 

5 0.32 0.64 0.94 

0.004 0.008 0.012 

0.28 0.55 0.81 

0. 04 

1. 28 
0. 02 

l
o
 

96 
0. 013 

0. 64 

0. 008 

l
o
 

55 
0. 006 

o
 

43 
0. 005 

O
 

35 

0. 004 

0. 18 
0. 002 

1
?
 

15 

0.003 0.006 0.01 

0.22 0.43 0.63 

0.08 o.ia 0.20 0.50 

2.46 3.03 5.55 11.11 
0.04 0.05 0.10 0.25 

1.80 2.27 4.16 8.33 

0.025 0.033 0.067 0.167 

1.23 1.52 2.78 5.56 

0.016 0.02 0.04 0.10 

1.06 1.30 2.38 4.76 
0.132 0.165 0.033 0.833 

0.82 1.01 1.85 3.70 

0.01 0.0125 0.025 0.0625 

0.67 0.83 1.52 3.03 

0.008 0.01 0.02 0.05 

0.35 0.43 0.79 1.59 
0.004 0.005 0.01 0.025 

0.30 0.36 0.67 1.33 

0.002 0.005 0.0075 

10 0.18 0.35 0.51 

0.002 0.004 0.006 

20 0.09 0.18 0.27 
0.001 0.002 0.003 

25 0.08 0.15 0.23 
0.001 0.002 0.003 0.004 0.005 0.008 0.02 

^Each entry in Table 4.1 has the format of 

Error in current vs. time curve in percent 
Similarity parameters (sp) values 

The base motor parameters used are typical parameters for a 100 

hp motor. 
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Summary 

In this chapter, a method of obtaining the electrical parameters 

for a single equivalent model was proposed. This method was extended 

to include the deep bar rotor effects of induction machines. This 

single equivalent model has a variable leakage reactance coefficient g. 

An algorithm to obtain approximate values of the variable leakage reac­

tance coefficient was proposed. Expressions to obtain the equivalent 

mechanical parameters for the single equivalent model were also given 

in this chapter. In the last portion of this chapter, the criteria 

which are needed to divide a group of motors into similar subgroups 

were established. 
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CHAPTER V. MODEL VERIFICATION AND APPLICATION 

In order to verify the proposed single equivalent model for a group 

of induction motors, both digital simulation and experimental methods 

were used. In this chapter, a series of simulation results will be 

presented. 

These simulation studies include: 

(1) Starting a group of induction machines. 

(2) Similar motor grouping. 

(3) Proposed model comparison with other models. 

(4) Applications. 

Starting a Group of Induction Machines 

This part of the simulation studies has been subdivided into three 

categories : 

(a) simultaneous starting; 

(b) nonsimultaneous starting; and 

(c) mixture of running and starting. 

Verification of the single equivalent model 
for simultaneous starting 

The starting current-time variation was obtained by digital computer 

for different pairs of machines and also for different combinations of 

three machines. Figure 5.1 shows the system configuration under study. 

In each case, the equivalent model parameters were computed as outlined 

in previous chapters and the equation of motion 2.21 was integrated by 

the fourth order Runge-Kutta method. The current computed for the model 
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(a) 

(b) 

Figure 5.1. Parallel induction machines supplied from an infinite 

bus voltage 
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was then compared with that obtained by the vector summation of the 

separate motor currents calculated for each motor using the individual 

motor equivalent circuit and the same equation of motion. Table 

5.1 shows all the parameters for each machine under study. 

Figures 5.2 and 5.3 show this comparison for different pairs of 

machines, and the overall results show good agreement. Figures 5.4 

and 5.5 show the current-time variation for combinations of three 

machines. These curves illustrate the accuracy of the single equivalent 

model. 

Verification of the single equivalent model 
for nonsimultaneous starting 

In this case, a typical 100 hp motor started 0.3 sec after a 1000 

hp motor. Figure 5.6 shows the current time variation for a combina­

tion of these two machines with nonsimultaneous starting. The simula­

tion results as shown in Figure 5.6 Indicate a good agreement between 

the proposed model and the simulation of individual motors. 

Verification of the model for ̂  motor group Including 

a mixture of running and starting motors 

The dynamic single equivalent model for a group of motors has been 

shown to be valid for the cases of all motors starting at the same 

time, two or more motors starting at different times such that some of 

the motors have not reached steady-state before additional motors are 

switched on, and all motors Initially at steady-state. This section 

presents the results of another case not previously considered, but 

one which will occur often in dynamic studies. 
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Table 5.1. Machine parameters^ 

Motor hp 
*3 

R 
r 

X H 

1 7.5 0.296 0.255 1.266 21.24 0.0025 

2 10 0.377 0.312 1.1 14.655 0.003 

3 20 0.2 0.175 1.5 12.5 0.012 

4 300 0.005 0.0045 0.05 0.9 0.04 

5 100 0.015 0.015 0.16 2.7 0.13 

6 500 0.0024 0.0025 0.032 0.6 0.9 

7 1000 0.0011 0.0011 0.016 0.35 1.7 

8 2500 0.0004 0.0004 0.0064 0.132 8.75 

^All parameters are on a 100 hp base. 
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Normally, most of the motors in a system will be running under 

steady-state conditions with some motors being switched on and off. 

The case presented here considers starting motors with other motors 

initially operating at steady-state. 

The specific system simulated used three motors specified in 

Table 5.1. A 2500 hp motor was initially at steady-state and 100 

and 1000 hp motors were started at the same time, A plot of the 

current versus time is shown in Figure 5.7 for both the single equiva­

lent model simulation and the vector summation of the three individual 

machines. The plots are extremely close, thus verifying the model for 

this case. 

Simulation Verification of the Single Equivalent Model 

for Grouping Similar Motors 

A 19-motor group .was identified with parameters shown in Table 5.1. 

The similarity parameter (sp) values were determined as developed in 

Chapter IV for each pair of motor groups with the closest run-up times 

as indicated in Figure 5.8a. For the combinations where the sp value 

was less than 0.033, the motors were combined into similar subgroups. 

This resulted in three subgroups shown in Figure 5.8b. To obtain the 

single equivalent model parameters, these three similar subgroups were 

combined using the technique which was developed in Chapter IV. A 

starting simulation was done on the single equivalent motor. Starting 

current resulting from this simulation was compared to the summation of 

the starting currents for all 19 motors, as shown in Figure 5.9. The 

difference in the results from the two methods was small. 
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Single Equivalent Model Comparison with Other Models 

The load representation in typical system studies is a static load 

model where the load is represented as a constant MVA, constant cur­

rent, constant impedance or some combination of the three. As an alter­

native, part of load may also be modeled in detail as an induction or 

synchronous motor. In this part of the comparison, a number of induc­

tion machines of different sizes and ratings were chosen with the 

parameters given in Table 5.1. These induction motor loads were simu­

lated for a simultaneous start-up using the equivalent circuit of 

each induction motor. Superposition of currents, input apparent power, 

input reactive power and torques of this simulation will be referred 

to as the detailed load model. The following comparisons are made to 

illustrate the differences among several models. 

First, a single equivalent dynamic load model found in the litera­

ture is compared against the detailed model. 

Second, the proposed single equivalent model is compared against 

the detailed model. 

Finally, the proposed model will be compared with experimental 

results. 

Comparison of the detailed model against an 

existing model * 

There are not any models available describing the behavior of the 

load which include starting transients. Berg's model [4] is the clos­

est model which could be applied, but as can be seen in Figure 5.10, it 

fails to accurately predict the starting transient of the group of motors. 
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There are two distinct differences in Berg's model [4] for starting 

transients: (1) the variation in the magnitude of the current is not 

predicted; and (2) the run-up time of his equivalent model is much less 

than the actual detailed model. Figures 5.10a, b, and c show results 

obtained from both models and the differences are clearly illustrated. 

Comparison of ̂ e detailed model against the 

proposed single eguivalent model 

The same combination of three machines as in the previous case with 

Berg's model was simulated using the proposed equivalent model. The re­

sults from the detailed model agree quite well with the proposed equiva­

lent model, as seen in Figures 5.11a, b, and c. This has also been 

illustrated with other results discussed earlier in this chapter. 

Comparison between the single eg uivalent model 

and experimental results 

Two induction machines of 7.5 hp and 10 hp ratings with parameters 

given in Table 5.1 were chosen. These two machines normally have nearly 

the same run-up times. It was more desirable to compare the proposed 

equivalent model with machines having different run-up times. There­

fore, the 10 hp machine was coupled to the shaft of a dc motor in order 

to increase the machine's inertia constant. This resulted in a longer 

run-up time for that machine. 

The combined inertia constant of the 10 hp induction machine and 

the coupled dc machine was found by measuring the mechanical load time 

constant which describes the rate at which the two coupled machines 

coast when the armature circuit is opened on the dc motor. 
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The inertia constant of the 7.5 hp induction machine was found as 

follows. First, the inertia constant of the 7.5 hp induction machine 

combined with a dc motor was found. Second, the inertia constant of 

the dc machine alone was obtained. The difference between these two 

values was the inertia constant of the 7.5 hp induction machine. 

The equivalent circuit parameters were determined experimentally 

for the two laboratory induction motors. Then the parameters of the 

single equivalent model of these two machines were calculated using the 

expressions developed in Chapter 3. 

The diagram of the laboratory experimental set-up is shown in Fig. 

5.lid. This was a balanced three-phase system and only one of the phase 

currents was monitored. A current transformer was placed in the circuit 

of phase "a" to decrease the current through resistance R and to electri­

cally isolate the storage oscilloscope. This resistance R had a very low 

value to minimize the effects on the motor performance. 

The voltage across the resistor R was observed on the oscilloscope 

for the simultaneous starting of both motors and then photographed. This 

voltage waveform is proportional to the current in phase a. The scaling 

factor is ̂  . 

I , = 5 V 
phase a R 

where n is the turns ratio of the current transformer. 

Then, the single equivalnet model was simulated for simultaneous 

start-up to obtain current vs. time data for comparison with the 

experimental results. In all other results presented in this chapter, 
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the current values are rms quantities. However, for comparison with 

the experimental current waveform, the peak current values were ob­

tained to make the curves easier to compare. 

Fig. 5.lie shows the current vs. time curves for both the experi­

mental results and the simulation of the single equivalent model of 

the two machines. The results agree well. 

Single Equivalent Model Application and Comparison 

Transient stability study 

A system with typical parameters (WSCC) was chosen to illustrate 

the application of the proposed single equivalent model in a transient 

stability study. The simulation results were obtained using two dif­

ferent models, the proposed single equivalent model and the constant 

impedance model. The system consists of nine buses, three generators 

and three loads. Figure 5.12 is a one line impedance diagram for the 

system under study. The prefault normal load flow solution is also 

given in Figure 5.12. Generator data for the three synchronous machines 

are given in Table 5.2a. The generators were represented by the full 

two axis model and IEEE Type 1 exciters. Exciter data are given in 

Table 5.2b, and induction machine parameters are given in Table 5.2c. 

This system is large enough to be nontrivial and permits the 

illustration of a number of dynamic concepts and results. Two sets 

of studies were conducted. 

First, all the loads were assumed to be constant impedance. 

Second, 30 percent of the load at bus number five was induction 

machines and the other 70 percent was constant impedance. In both 



www.manaraa.com

98a 

100 MW 

35 MVAR 
230 kV 230 kV 

13 kV 

Load C 

j0.0586 

0.0085 + j0.072 0.0119 + j0.1008 

B/2 = j0.1045 B/2 0745 

230/13.8 18/230 

vo m 
If) 

o 

CM 
m <Ti 

m CN 

230 kV 

m 
CO 
o 

CM 
CTl 
O 

CO 
CO 

125 MW 
50 MVAR 

90 MW 
yf 30 MVAR 

o 

n •m 

Load A o 
CM CM 

O O 

O •o 

n 
CM 

If) 

•n 

Pig. 5.12. The WSCC 9-bus test system 



www.manaraa.com

98b 

Table 5.2a. Generator data 

Generator 1 2 3 

Rated MVA^ 247.5 192.0 128.0 

kV 16.5 18.0 13.8 

Power factor 1.0 0.85 0.85 

Type hydro steam steam 

Speed 180 r/min 36000 r/min 36000 r/mii 

^d 
0.1460 0.8958 1.3125 

0.0608 0.1198 0.1813 

0.0969 0.8645 1.2578 
1 

0.0969 0.1969 0.25 

(leakage) 0.0336 0.0521 0.0742 

T^dO 8.96 6.00 5.89 

tqO 0 0.535 0.600 

Stored energy 

at rated speed 2364 MW'S 640 MW'S 301 MW'S 

^Reactance values are in pu on a 100-MVA base. All time con­

stants are in s. 
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Table 5.2b. Exciter data 

ex 
B 
ex 4 R 

0.0013 1.4015 25 -0.0516 0.093 0.06 0.350 0.579 0.2 

Table 5.2c. Single equivalent model parameters^ 

R R X X H T a S 
s r m o 

0.7774 0.5630 8.982 232.1715 0.0105 0.0183 1.96 0.01109 

^All the single equivalent parameters are given on 100 MVA base. 
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cases, a three phase fault was placed on bus number seven. The load 

behavior at bus number five was monitored in both cases. Figures 5.13, 

5.14, 5.15, and 5.16 show power, reactive power, voltages and generator 

rotor angles, respectively, for both cases one and two. 

Figure 5.13 shows the real power consumed at bus number five for 

the two different load models. It can be seen that during the fault, 

the induction motor load at bus number five consumes more power than 

in the case of 100 percent constant impedance. This is because of the 

decrease in the motors' speeds due to the voltage drop during the fault. 

In the case of constant impedance, little variation of power during the 

fault can be seen. The post fault results are also quite different. As 

it was explained previously, the machines' speeds will decrease during 

the fault. Once the fault is cleared and the voltage has recovered, the 

machines will accelerate until their speeds reach the prefault steady-

state value. Therefore, in that period of time, the machine load will 

consume considerably more power than it does in the prefault steady-state 

condition. 

This pattern and reasoning are also consistent for the reactive 

power drawn by the load as observed from the curves shown in Figure 

5.14. 

The voltage at bus number five for both cases is shown in Figure 

5.15. For the case with induction machine load, the voltage continues 

to drop during the fault because the machines' speeds will decrease, 

causing them to draw more current during the fault. In the constant 

impedance case, the voltage remained nearly constant during the fault. 
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Figure 5.16 shows the rotor angles of generators 2 and 3 with re­

spect to generator 1 for both cases. There are some differences, most 

notably in the peak amplitude of the swing angles. This illustrates that 

the proposed single equivalent induction motor model could be used in 

transient stability studies to evaluate the effects of induction motor 

load. 

Application of model for voltage dip studies 

Another application of the single equivalent model is the investi­

gation of voltage dip on distribution systems. To verify the validity 

of the single equivalent model for such applications, the voltage on the 

system shown in Figure 5.17 was dropped to 65 percent of rated value and 

held at that level. Figure 5.18 shows real and reactive power for both 

the single equivalent model and the vector summation of the three indi­

vidual motors. It can be seen that these plots are extremely close. 

Therefore, the single equivalent model can be successfully utilized to 

investigate voltage dip types of studies. 

Summary 

In this chapter, simulation results were presented to demonstrate 

the validity and application of the single equivalent model of a group 

of induction motors. The results obtained from utilizing the proposed 

model for starting, running, and mixtures of running and starting groups 

of induction motors were shown to have good agreement with the results 

obtained from the vector summation of the individual motors' simulation 

results. 
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Results obtained from dividing motors into similar subgroups showed 

that the proposed similarity parameter can be successfully used as the 

criteria for defining similar subgroups. A study case of 19 machines 

demonstrated how a larger group of motors can successfully be divided 

into a much smaller number of similar subgroups. 

Experimental data obtained in a machinery laboratory were also pre­

sented as part of the verification of the proposed model. Finally, 

applications of the single equivalent model were illustrated for voltage 

dip and transient stability studies. 

From the result comparisons, it can be concluded that the proposed 

single equivalent model can accurately predict the dynamic performance 

of a group of induction motors and can be incorporated into typical 

power system simulation studies. 
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CHAPTER VI. CONCLUSION 

Recent economic pressures have encouraged the electric utility in­

dustry to design and operate their systems closer to the predicted 

thermal and stability limits. The evaluation of the reliability of the 

system depends on the accuracy of these predicted limits. In order to 

more accurately determine where the limits are, the need for the improve­

ment of load modeling techniques has increased. Recently, the loads in 

the United States have been analyzed and classified by Arthur D. Little 

[10]. It was pointed out that induction motor loads constitute about 

66% of the industrial, commercial and residential loads. Therefore, 

one of the main areas of load model improvement is developing techniques 

for including the dynamic behavior of the induction motor portion of the 

load. 

In studies involving motor loads for large networks, detailed rep­

resentation of each motor is not practical. Even in dealing with pro­

posed simplified motor models, the mathematical equations and computa­

tional requirement become prohibitive. Further reduction of the compu­

tational requirements is necessary to practically represent a group of 

induction motors. 

In this research, a method of finding a single equivalent repre­

sentation of a group of induction motors has been developed. The model 

was developed in order to have a dynamic induction motor load model 

valid over the whole speed range (zero to full load speed), and, 

especially, to be able to predict the starting transients of a group of 

induction motors. The load model is based upon the induction motor 
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equivalent circuit and has been extended to include deep-bar rotor 

effects as well as stator resistance effects of induction machines. 

The single equivalent model parameters are determined directly from 

the individual motors' equivalent circuit parameters. The proposed 

single equivalent model representing a large number of induction motors 

is similar to the well-known induction machine equivalent circuit model. 

The proposed single equivalent model contains a variable leakage reac­

tance which is determined prior to the simulation from the individual 

equivalent circuit of each motor in the group. 

The model is shown to accurately predict the dynamic response of 

a group of induction motors for both running, starting or a combina­

tion of running and starting conditions. The effect of voltage dips 

on the response of a group of motors is shown to agree well when the 

reduced model is compared to the vector summation of the responses from 

the individual motors. This model can be incorporated as a load model 

in power system studies such as load flow, transient stability, and 

distribution voltage dip analysis. 
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APPENDIX A. NEWTON'S METHOD 

Newton's method is one of the most powerful methods for finding a 

root of a function. There are other techniques that will accomplish 

this task, but Newton's method, when it works, converges to the root of 

the function very rapidly. There are at least two common ways of intro­

ducing Newton's method. The most common way is to consider the technique 

graphically. Suppose f(x) is differentiable on [c,d] and f'(x) ̂  0 for 

all xe[c,d]. 

The idea is to provide an initial value x^e[c,d] as a starting value 

and update this value until either 

(1) x^ approximates T (as shown in Figure A.l) with error <e; 

(2) x^ does not lie in [c,d]; or 

(3) the number of iterations exceeds a preassigned value and we 

terminate the procedure because of apparent lack of con­

vergence . 

Let x^ be an approximation of T. If x^ is not sufficient close to 

T, update x to x ,,, where x ,, is the unique real number such that 
n n+1 n+1 

(x^_^^,0) lies on the tangent line through (x^,f(x^)). The equation of 

this line is given by 

y - f(x ) = f'(x )(x-x ) 
n n n 

Thus, if y = 0, 

x-x = -f(x )/f'(x ) 
n n n 

and so 

\+l = Xh - f(=h)/f'(Xn) • 
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A second method of looking at Newton's method is an intuitive 

approach based on the Taylor Polynomial. 

Suppose f is twice differentlable on [c,d] and f ' (x) 0 for all 

xe[c,d]. 

Consider the second degree polynomial for f(x), expanded around x , 

^X—Xr* ) ̂ 
f(x) = f(x^) + (x-x^) f'(XQ)  + — 2  f"(x^ )  

2 
Assuming (x-x^) is very small, (x-x^) is even smaller and the second 

order term can be neglected. Since f(x) = 0, we have 

0 = f(x^) = - (x-x^)f'(x^) . 

Solving for x, we get 

*n+l " *n - f(=a)/f'(=n) * 

y 

tangent lines 

Figure A.l. Convergence process of Newton's method 
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APPENDIX B. MECHANICAL BASES AND PER UNIT EQUATIONS 

Since power is the product of torque and speed, base torque can be 

taken as rated three-phase power divided by rated mechanical speed. 

Defining S^ as the rated power per phase and as the rated speed 

in electrical radians per second, the expression for base torque in 

terms of S, and o), is: 
b 0 

b 

where P is the number of poles of the machine. 

If T^ is the mechanical load torque, the dimensional equation for 

rotor acceleration is 

2 dur 
# J inr = T» - T. (B-2) 

where J is the moment of inertia and is the rotor speed in electrical 

radians/sec. Since the kinetic energy of a rotating body is 

W = i (B.3) 
z m 

the stored energy at rated speed is 

"a - 2 J (=-4) 

2 
because the mechanical speed is oi =-=- w, . 

m r b 

Solving equation B.4 for J and substituting into equation B.2 gives 

-
P ^b 
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When equation B.5 is divided by equation B.l, the relationship between 

rotor acceleration and per unit torque is found to be 

2W dw 

• (B.6) 

where T and T are now in per unit. 
em 

The inertia constant H has been defined to be the ratio of iner-

tially stored energy to rated three-phase volt amperes, or 

H = (B.7) 

and equation B,6 is rewritten to be 

2H do) 

lif - Te - (B'S) 

where H and t are in seconds, and are in radians/sec., and torque 

is in per unit. 
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APPENDIX C. MATHEMATICAL LIMITS OF THE SPEED OF THE 

EQUIVALENT MACHINE 

Recalling equation 3.7 and taking its limit as S^ and Sg, approach 

to zero will result in 

+ (Xl + %2)' 

. 11. : ^ 
s-^0 ^rgi+r^i+srg2+r^2X8rgi+r^]Xsrg2+r^2)+ŝ  [x̂   ̂

= (=''sl+'rl+̂ ''82+''r2)  ̂

sR^(srsi+r^l^+sr^2+^r2^^ 

~ sio (srsi+rri+srgz+rrz) (̂ ŝl̂ '̂ rl̂  ("sZ+'̂ rẐ +̂ ^̂ ^̂ 'ẑ ŝl+'rl̂ -̂ l̂ ŝZ+'̂ r;)] 

3 2 
+ s (X^+Xg) 

-s*s(srsl+rrl+:rs2+rr2)^+=^(*l+*2)^ 

('rl + fr2)(rrl)('r2) " " 

Therefore, it is shown that 
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The equivalent speed w in a per unit system is 

0) = 1 - S . (C.3) 

The expressions for and Wg are given in equations C.4 and C.5. 

= 1 - s^ (C.4) 

Wg = 1 - Sg . (C.5) 

Taking the limit of equation C.4 will result as 

lim (D. = lim (1-s,) = 1 (C.6) 

Also, taking the limit of equation C.5 will yield 

lim w = lim (1-s.) = 1 . (C.7) 

• s2^0 

Finally, taking the limit of equation C.3 will result as 

lim u) = lim (1-S) (C.8) 
S-^-0 S-K) 

lim w = 1 
S-»-0 

Therefore, it has been shown that as individual machines' speeds 

approach zero, so does the speed of the single equivalent model. 
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APPENDIX D. TRANSFORMATION TO o.d.q. AXIS QUANTITIES 

The relation between the various coil flux linkages, self and 

mutual inductances, and coil current is given as : 

'as 
L 
s 

—L 
sm 

—L 
sm 

L 
as-ar 

L 
as-br 

L 
as-cr 

\s ^sm ^s 
—L 
sm 

L, 
bs-ar ^bs-br ^bs-cr 

X 
cs 

—L 
sm ^sm 

L 
s 

L 
cs-ar ^cs-br 

L 
cs-cr 

'ar 
L 
ar-as ^ar-bs 

L 
ar-cs -^mr 

-L 
mr 

\r br-as ^br-bs 
L. 
br-cs -\r 

L 
r 

—L 
mr 

_'cr_ 
L 
_ cr-as ^cr-bs 

L 
cr-cs "^mr "^mr 

L 
r J 

i 
as 

CO 

^cs 

^ar 

Sr 

J'cr. 

(D.l) 

where the subscript "s" denotes stator quantities and "r" rotor quanti­

ties; a, b, or c denotes the three stator or rotor phases; and equals 

stator self-inductance, which is constant for all the three identical 

stator phases. 

= mutual inductance between stator phases, a positive constant 

= rotor self-inductance, which is constant for all three 

identical rotor phases 

= mutual inductance between rotor phases, a positive constant. 

All mutual inductances between stator and rotor phases - Ljj.) 

in the above matrix are variables, and their magnitudes depend on the 

position of the rotor with respect to the stator. In general, these 

mutual inductances are given by equation D.2: 
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^is-jr ^jr-is ^sr "is-jr 
(D.2) 

L is constant and a, . is the angle between stator winding i and 
sr is-jr 

rotor winding j in general for any rotor position 6^. 

Matrix D.l may also be represented by matrix D.3. 

X L ' L„ i , 
abcs 1 1 2 

i—— — 
abcs 

_^abcr_ _^3 1 ^4 ^abcr 

(D.3) 

Stator and rotor phase voltages can be written as follows: 

M 1 

V 
as 

r 
s 

0 0 0 0 0 
^as 

PA 
as 

CO 0 
^s 

0 0 0 0 
^bs P^bs 

<
 

o
 

CO
 0 0 0 0 0 

^cs f^cs 
——— 

= 
—— r — — — —  ———— — — + 

^ar 
0 0 0 r 

r 
0 0 

"ar 
PX 

ar 

Vbr 0 0 0 0 
^r 

0 
^br P'br 

0 0 0 0 0 
^r_ /cr J^cr 

(D.4a) 

where P is the — operator. 
at 

Equation D.4a could be written in a compact matrix. 

^abcs V3j_ ° " ^abcs 
PA 

abcs 

^abcr ° Tv3 ^abcr 
PX . 

abcr 

is a 3 by 3 unity matrix, and [0] is a null 

(D.4b) 
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Transformation to o.d.q. Axis Quantities 

Simplification of a, b and c phase equations for flux linkage D.l 

and voltage D.4a can be achieved by transformation of variables from 

abc quantities to o.d.q. axis quantities. This is accomplished by using 

the orthogonal version of Park's transformation. This transformation 

transforms all variables onto the direct (d) and quadrature (q) axes 

as in equation 1.4, and the o axis, which is stationary. The most com­

monly used reference frames are known as the synchronously rotating 

reference frame, the rotor reference frame, the stationary or stator 

reference frame, and the arbitrary reference frame. 

In the synchronously rotating reference frame, the d and q axes 

rotate at synchronous speed. The d and q axes are fixed to the rotor 

in the rotor reference frame. In the stationary reference frame, the 

d and q axes are stationary, and thus fixed to a constant position on 

the stator. The arbitrary reference frame is an intermediate step which 

is useful because of its generality. In Figures D.l and D.2, the angles 

0 and 3 are defined as the angles between the d axis and the A phase mag­

netic axis of the stator and rotor, respectively. 

Park's Transformation 

Transformation from the abc phase quantities to the arbitrary 

reference frame o.d.q. axis quantities is accomplished by equation D.5. 

For stator quantities, 

['odqsl -
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rotor 

a phase 

magnetic 

axis 

stator 

a phase 

magnetic 

axis 

Winding current direction: 

® current in 

O current out 
as 

Figure D.l. General three-phase induction motor 

d-axis 

rotor 
a phase 
magnetic 
axis 

stator 

a phase 

magnetic 

axis 

as 

q-axls 

Figure D.2. Motor with magnetic axes and arbitrary d and q axes shown 
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For rotor quantities, 

(D.5b) 

where 

Ji Ji 

[ f e i -

Ji 
COS0 COS (0-120) cos (0+120) 

sin0 sin (0-120) sin (0+120) 

M 

cosg cos (B-120) cos (B+120) 

_sing cos (3-120) sin (g+120)_ 

(D.6) 

[Fabc^ is the set of three-phase quantities; current, voltage, or 

flux linkage. is the corresponding set of axis quantities. 

Because of the orthogonality of the transformation, it follows that 

[Pe]-' = [Pg]?, [Pg]-! = [P;]" . (D.7) 

Transformation of Equations 

Equation D.8 describes a general system of three-phase voltages. 
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V ~R 0 d" i~ P A ~  
a a a 

^b 

= 
0 R 0 

"b 
+ 

v„ 0 0 0 1 PA 
_ c_ _ g _ c 

(D.8) 

In matrix notation, equation D.8 becomes 

(D.9) 

In order to obtain the o.d.q. axis voltages, equation D.9 is multi­

plied by [Pg]. 

'•^e^'-^abc^ ^ [^e^^^abc^^^e] '•^e^'-^abc^ '•^6^'•^^abc^ ' (D.IO) 

Equation D.IO can be rewritten as 

(D.ll) 

If the o.d.q. axis resistance is defined as 

I^odql - . (D.12) 

where : 

'"odql = 1^1 

R 0 0 

O R 0 

0 0 R 

-1 

R 0 0 

0 R 0 

0 0 R 
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equation D.ll becomes 

• «odqll^dql + ' »•") 

Equation D.12 is known as a similarity transformation. 

The derivative of equation D.5 is 

' fe'tPfabc' - -  [ffe'lFabc' • 

since • 

'PeltfFabc: = t^^odql " '^el'^^'odql ' 

Using equation D.6, 

[PPJ[PJ 
-1 

0 0 0 

0 0 -pe 

0 P8 0 

(D.16) 

Similarly, for rotor quantities. 

0 0 0 

[PPg][Pg] 
-1 

0 0 -PG (D.17) 

0 Pg 0 
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By substituting the results of equations D.15 and D.16 into equa­

tion D.13, the o.d.q. axis voltages can be written in terms of o.d.q. 

variables only. 

^ 0 

-X pe 
q 

d 

(D.18) 
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APPENDIX E. DIGITAL COMPUTER PROGRAM FOR THE 

REDUCED ORDER MODEL 

The simulated equations are given in equations E.l, E.2, E.3 and 

E.4. The step-by-step time solution of these equations is undertaken 

by first solving the electrical equations with the current value of 

rotor slip. The developed torque is then found from the rotor current. 

Equation E.4 is then solved over a time step of integration by a fourth 

order Runga-Kutta integration subroutine. A time step of 0.01 second 

was used in this study. The rotor speed is then used to find the slip 

for the next iteration. The digital program used to solve the reduced 

order model in this study is presented in Table E.l. 

Table E.2 contains a list of computer variables and constants and 

the equivalent expressions used in the text. A simplified flow chart of 

the computer program is given in Figure E.l, and the equivalent circuit 

is shown in Figure E.2. 

Equations E.1-E.4 are given below: 

" = + VI ̂ ar + las 

r 
T = -Ï-5E (e . 3 )  
e s 

% 
w " 2H (T - T ) dt . (E.4) 

e m 



www.manaraa.com

Table E.l. Reduced order model digital program listing 

MAIN PROGRAM 

STARTING OF AN INDUCTION MOTOR WITH SINGLE CAGE ROTOR.SUPPLIED 
FROM INF. AUS. THRU ZC TIE-LINE IMPEDANCE.FIRST ORDER MODEL FOR 
MACHINE NEGLECTS ELECTRICAL TRANSIENTS. EQUATIONS AND 

SIGN CONVENTIONS FROM BOOK BY ADKINS AND HARLEF. 

"REED" READS IN AND PRINTS OUT DATA 
"COEFF" FINDS VARIOUS A.B.C.D, ETC. COEFFICIENTS FOR MOTOR EQUNS. 
"INTE5" IS NUMERICAL INTEGRATING ROUTINE WHICH IN TURN CALLS 
"PLANT". "PLANT"CONTAINS DIFFERENTIAL EQUNS. AND "INTEG" RETURNS 
NEW INTEGRATED VALUES TO "MAIN PROGRAM". 

"RITE" PRINTS OUT COLUMNS OF INTEGRATION RESULTS 
"MSrART" SETS INITIAL VALUES FOR STARTING THE MOTOR. 
"NDIFF" IS THE NUMBER OF DIFFERENTIAL EQUNS TO SOLVE IN "XY". 

C0MM0N/3LI/SA2.SÛ3.D£G.RAY »XY(6).XDOT(B). ACF,WZ.PAI .SUDI,SUQL 
CQMM0N/BL4/ T,DELT,LINES, L.N,TFINAL»NDIFF,II 
COMMON A(100. 10)«X( 100}.Y(100) 
I 1=0 
CALL REED 
READ(5.I 1 ) NUMRUN 

11 FORMAT* 12) 
DO 86 NRUN= 1.NUMRUN 
READ(5»12) FCAP 

12 FORMAT* F10.3 ) 
CALL STEADY 
WRITE(6.60) 
CALL CAPACT(FCAP) 

C DISTURBANCE STARTS#****DI5TURBANCE STARTS#**##* 
CALL MSTART 
WRITE(6.10) 

10 FORMAT!.2X.•TIME».3X.•VTRMS».4X. 'SLIP',4X, 
2 'SPEED' .3X.«TEM'.6X,» TLM» ,4X.•TEM3• ,3X, • IMRMS • .3X.•VFEED' . 
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3 5X, * a V A « ,  4X,*BP0W». 5X.•BPF•T5X,«TVA•,4X,•TPQW•,5X.•TPF•,/) 
CALL RITE 

84 CONTINUE 
CALL INTEG(T. DELT.NDIFF. XY, XOOT ) 
IF(L-N) 77,78,77 

78 L=0 
L1NES= LINE3+1 
IFC LLNES-5) 38,37,37 

37 WRITE(6,60) 
LINES= 0 

38 CALL RITE 
77 L=L+1 

IF(T.GT. TFINAL ) GO TO 85 
GO TO 84 

85 CALL RITE 
86 CONTINUE 
60 FORMAT (2X, • 

2 • ) 
00 998 1=1,5 ' , 
DO 997 J=L,II 
Y(J)=A(J,I) 

997 CONTINUE 
CALL GRAPH(I I,X,Y,1,4,10.0,6.0,0.0,0.0,0.0,-10.0, 
+*T-SEC -p.u.;',' ; ,'IN PER UNIT;*) 

998 CONTINUE 
00 996 J=1,I I 
X(J)=A(J,3) 
Y(J)=A(J,4) 

996 CONTINUE 
CALL GRAPH*II,X,Y,1,4,10.0,6.0,0.0,0.0,0.0,-10.0, 
+»SPEEO-;TORQUE;»,«LINE ;*,'IN PER UNIT;») 
STOP 
END 

C 



www.manaraa.com

Table E.l Continued 

SUBROUTINE REED 
REAL LI.L2.L3,LM»L11.L22»L33,LAMOAtLAMDAR . IMRMS» IM INST,LC 
COMMON/BLl/SQ2.SQ3.DEG,RAY.XY(6).XD0T(6) , ACFtWZ.PAI,SUD1 .SUQl 
C0MM0N/BL4/ T,OELT•LINES. LtN,TFINAL.NOIFF.II 
COMMON/BL5/R1.XI,RM,XM.TXi.TXIItT1 «T11.POLES,F, PHASE,HM. 
2 LAMOA ,LAMDAR,RC,XC,R2,X2.R3,X3,TLM,TEM,URMS,SPEED 
COWMON/BLô/ TACM,SLIP ,TL0,TL2 
COMMON A( 100.10) ,X( 100} ,Y(100) 
WRITE(6,103) 

103 FORMAT*'1', 45X, 'SYSTEM DATA',/45X, • • ) 
READ(5, 100)R1.XI,RM,XM.R2,X2,TLM 
WRITE(6. 101)R1.X1.RM«XM.R2*X2,TLM 
READ(5.100) POLES,F,PHASE, HM.LAMDA. RC,XC 
WRITE(6.102) POLES,F,PHASE, HM,LAMDA, RC.XC 

100 FORMATC8F9.4 ) 
101 FORMAT("0•. 2X,•Rl=*,F6.4,8X,•Xl=»,F6.4,aX,•RM=*,F6.4.8X,•X M = • ,  

2 F6.3,8X,«R2=«,F6.4,8X,*X2=«,F6.4,ax,'TLM=*, F6.4 ) 
102 FORMAT{ 2X,•POLES=',F4.1,9X,•F=•,F6.1,8X,•PH=«,F4.1,1 OX.•ri=•. 

2 F4.1,8X,'LAMDA=*,F6.1.8X,'RC=«,F6.4,9X,'XC=*,F6.4 ) 
C 

READ(5.104) 0ELT,N,TFINAL.TL0,TL2 
WRITE(6,105) DELT.N,TFINAL.TLO, TL2 

104 FORMAT* F7.4, 13,3F10.4 ) 
1 0 5  FORMAT* 2X , • D E L T  = * ,F6.4,8X,•N  = *,I  2,1  OX,•TFI N A L  = * ,F4.1,7X, 
2'TL0=', F6.3,7X, •TL2=•, F7.4 ) 
RETURN 
END 

C 
C 

SUBROUTINE STEADY 
REAL LI.L2*L3,LM.L11,L22,L33,LAM0A.LAM0AR.IMRMS,IMINST.LC 
COMPLEX UBUS. UMOT.IMOT.ZC.ZMOT,ZMAG,ZLEAK,CMPLX,CAIL,ZL 
COMPLEX ZCIRC, ZCAP ,CVFEED 
COMMON/BLl/SQ2,SQ3,OEG.RAY,XY{6),X00T(6) , ACF,WZ,PAI.SUD 1.SUOl 
C0MM0N/BL4/ T,DELT,LINES, L,N,TFINAL,NDIFF,I I 
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COMMON A( 100. 10 ) .X( 100).Y(100) 
COMMQN/BL5/R1.XI.RM.XM.TXl.TXll.Tl.Tll.POLES,F. PHASE.HM. 
2 LAMOA.LAMDAR.RC.XC.R2.X2.R3.X3.TLM.TEM.URMS.SPEED 
C0MM0N/BL6/ TACM.SLIP .TL0.TL2 
COMMON/BL9/ UBUS. UMOT.IMOT.ZC.ZMOT.ZMAG.ZLEAK.RMOT,XLEAK.ZL 
502= SQRT(2.0) 
SQ3= SQRT(3-0) 
PAI= 3.141593 
WZ= 2.0*PA[*F 
ACF= PAI+F/HM 
T—0 # 0 
LINES = l 
L=1 
NOIFF= 1 
DO 300 J=1.6 
XY(J) =0.0 

300 XDOT(J)= OiO 
TEM=0.0 
TACM= 0.0 
URMS= 1.0 
UMOT= CMPLX( 0.0.0.0) 
IMOT= CMPLX(0.0,0.0) 
UBUS= CMPLXC URMS, 0.0) 
ZC= CMPLXC RC,XC) 
ZMAG= CMPLX(Û.0,XM» 
XLEAK= XI +X2 
SLIP= 1.0 
T = 0.0 
SPEED=0.0 
XY(1) = WZ+SPEED 
SLIP = 1.0 - SPEED 
RETURN 

ENTRY CAPACT(FCAP) 
RMOT= R1+ R2/SLIP 
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Z L E A K =  C M P L X (  R M O T t X L E A K )  
Z M O T =  Z M A G * Z L E A K / ( Z M A G +  Z L E A K )  
ZCIRC= ZC +ZMOT 
X C A P  =  - A I M A G <  Z C I R C ) * F C A P  
XCAP = O.ÛOI 
Z C A P =  C M P L X (  0 . 0 ,  X C A P )  
ZL= ZC + ZCAP 
ZCIRC = ZL+ ZMOT 
WRITE* 6,299) XCAP,FCAP, ZCIRC 

299 FORMAT( 3X,'TRANSMISSION LINE SERIES CAPACITIVE REACTANCE OF* 
2,F8.4,IX,«P.J. PER PHASE,EQUALS •,F4.2,1X, 'TIMES TOTAL CIRCUIT IN 
3DUCTANCE.' ,/,4X, «TOTAL CIRCUIT IMPEDANCE = •,FS.4.1X,•+•,1X,•J(• 
4, IX, F9.4,IX, ') P.U.' ) 
RETURN 

C-
E N T R Y  M S T A R T  
W R I T E ( 6 , 2 5 0 )  

250 FORMATI,40X,•STARTING PERFORMANCE OF A 3-PHASE INDUCTION MÛTOR' 
2 ) 

C A L L  P L A N T (  T ,  X Y ,  X D O T  )  
R E T U R N  

C 
ENTRY RITE 
AIMI= AIMAGCI MOT) 
RIM= REAL(IMOT) 
IMRMS= SQRT( RIM*RIM + A IM I * A I M I ) 
RV= REALCUMOT ) 
AIV = AIMAG( UMOT ) 
V R M S =  S O R T (  R V * R V  +  A I V * A I V  )  
CVFEEO = UBUS - IMOT*ZC 
ACVF = AIMAG( CVFEED ) 
RCVF= REAL( CVFEED ) 
V F E E D  =  S Q R T (  R C V F * R C V F  +  A C V F * A C V F  )  
TEM3 = TEM*3.0 
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T V A =  V R M S + I M R M S  
T P a w =  R I M + R V  +  A I M I ^ A I V  
TPF= TPQW/TVA 
b v a =  u r m s * i m r m s  

BPOW= URMS*RIM 
BPF= BPOW/8VA 
WRITE(6T301}T,VRMS,SLIP,SPEEDTTEM,TLM,TEM3,IMRMS. VFCED . 
2 BVA,BPOW,BPF, TVA.TPOW.TPF 

301 FORMAT* F7.3,14F8.3) 
1 1 = 1 1 + 1  
x (  i  i  )  =  t  

a ( i i , 1 ) = v r m s  

a ( i i , 2 ) = s l i p  

a ( i i , 3 ) = s p e e d  

a (  1 1 . 4 ) = t e m  

a { i i . 5 ) = i m r m s  

r e t u r n  

e n d  

C 
C 

s u b r o u t i n e  PLANT( t d u m ,  v «  YOOT ) 
DIMENSION V(6).YD0T(6) 
r e a l  l 1 , l 2 t l 3 . l m, L l 1 , l 2 2 , l 3 3 . l a m o a . l a m o a r , i m r m s , i m i n s t . l c  

c o m p l e x  u a u s ,  j m o t .  i m 0 t , z c , 2 m 0 t t z m a g . z l e a k , c . m p l x , c a i l , z l  

c o m m o n/BLl / s a 2 , s q 3 . d e g » r a y . x y ( 6 ) , x d 0 t ( 6 ) .  a c f . w z . p a i . s u d 1 , s u 0 1  

c 0 m m 0 n / b l 4 /  t . d e l t , l i n e s ,  l , n , t f i n a l , n d i f f , i i  

c o m m o n  a ( 1 0 0 , 1 0 ) , x ( 1 0 0 } , y ( 1 0 0 )  

COMMON/BL5/RI.X1,RM,XM,TX1,TX11,T1,T11,POLES,F, PHASE,HM, 
2 LAMDA,LAMDAR,RC,XC,R2,X2,R3,X3,TLM,TEM,URMS,SPCED 
COMMON/BL6/ TACM,SLIP ,TL0,TL2 
c 0 m m 0 n / b l 9 /  u b u s ,  u m d t , i m o t , z c , z m o t , z m a g , z l e a k , r m o t , x l e a k , z l  

r m o t =  r 1 +  r 2 / s l i p  

ZLEAK= CMPLX{ RMOT,XLEAK) 
ZMOT= ZMAG*ZLEAK/(ZMAG+ ZLEAK) 
IMOT= UBUS/(ZL+ ZMOT) 
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Table E.l Continued 

UMOT= U8US- IMaT»ZL 
CAIL = UMOT/ZUEAK 
RAIL = REAL(CAIL) 
AIAIL= AIMAG(CAIL) 
AILEAK= SÛRT( RAIL*RAIL + AIAIL*AIAlL ) 
TEM= AIL£AK*A1LEAK*R2/SLIP 
SPEEO= V(I)/*Z 
TLM = TLO + TL2*SPEED*SPEED 
TACM= TEM -TLM 
YD0T(1)= ACF*TACM 
SLIP = 1.0- SPEED 
RETURN 
END 

C 
c 

SUBROUTINE INTEG(T,DELT#N,X.YDOT ) MAINOOlO 
C FIXED KUTTA MERSON OVERRIDING THE VARIABLE TIME STEP MAIN0020 

DIMENSION X(6). YD0T(6), XN{6J 
DIMENSION FK1(8), FK2(S), FK3(8), FK4(8). FK5(a) 

C N IS LIMITED BY CORE STORAGE AND IS THE NUMBER OF DIFFERENTIAL EQNMAIN0050 
DELT2=0ELT/2. MAIN0060 
DELT3=0ELT/3. MAIN0070 
CALL PLANT(T« X , YDOT ) MAIN0080 
DO 10 M=1,N MAIN0090 
FKl(M)=DELT3*YDOT(M) MAINOlOO 
XN(M)=X(M>+FK1(M) MAINOIIO 

10 CONTINUE MAIN0120 
T3=T+DELT3 MAIN0130 
CALL FLANT(T3, XN, YDOT ) MAIN0140 
DO 20M =1,N MA INO150 
FK2(M)=DELT3*YDOT(M) MAIN0160 
XN(M»=X(M)+(FK2(M)+FK1(M))/2. MAIN0170 

20 CONTINUE MAIN0180 
CALL PLANT(T3. XN. YDOT ) MAIN0190 
DO 30 M=l,N MAIN0200 
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Table E.l Continued 

+12.»FK4(M) )/2. 

FK3(M)=DELT3#YD0T(M) 
XN(M)=X(M»+(FK3(M) *9.+j.*FKl(M))/8. 

30 CONTINUE 
T2=T+DELT2 
CALL PLANT(T2F XN» YDOT ) 
DO 40M=l,N 
FK4(M)=OELT3*YaOT(M) 
XN(M) = X(M) +{ 3.*FKl(M) -9.*FK3(M) 

40 CONTINUE 
T=T+OELT 
CALL PLANTCT, XN, YDOT ) 
DO 50M=1.N 
FK5(M)=0ELT3»YD0T(M) 

50 CONTINUE 
DO 60M=I»N 

X(M)=X(M)+(FK1(M)+4.*FK4(M)+FK5(M))/2. 
6 0 CONTINUE 

RETURN 
END 

SENTRY 
0.0 0.0 0.0 1.3 0.03 0.04 0.0 
4.0 60.0 3.0 1.0 -90.0 0.000 0.00 
0.025 2 2.2 0.0 0.0 
l 

0.0 
//G0.FT14F001 DD DSNAME=&SM.UNIT=SCRTCH.DISP=(NEW,PASS), 
// SPACE=(a00,(120,15)),DCB=(RECFM=VBS.LRECL=79ô,BLKSlZE=a00) 
//SMPLTTR EXEC PLOT,PLOTTER=INCRMNTL,FORM=W 

MAIN0210 
MAIN0220 
MAIN0230 
MAIN0240 
MAIN0250 
MAIN0260 
MAIN0270 
MAIN0230 
MAIN029C 
MAIN0300 
MAIN0310 
MAIN0320 
MAIN0330 
MAIN0340 
MAIN0350 
MAIN0370 
MAIN0380 
MA1N0390 
MA IN0410 
MAIN0420 

0 0 0 0 0 0 0 1  
00000002  
00000003 
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Table E.2. Equivalent parameters 

Text Computer Program 

r^ R2 

oj, L XI 
b s 

X2 

a),M XM 
b 

H HM 

V UMOT 
as 

V IMOT 
as 

V UBUS 

S SLIP 

\ . WZ 

w /o), SPEED 
r b 

0)̂  XY(1) V(l) 

pojj. YDOT(l) 

I AILEAK 
ar 



www.manaraa.com

135 

READ 
PAKAMI-TKRS 

CALCULATE CONSTANTS' 
SET ALL VARIABLES 

TO ZERO 

SET INITIAL 
CONDITIONS 

CALCULATE AND 
PRINT DESIRED 

VARIABLES 

CALCULATE ROTOR 
CURRENT FROM 
STEADY STATE 

EQUIVALENT CIRCUIT 

SOLVE DIFFERENTIAL 
EQUATION TO FIND 

w 

NO 

it = tV Ati 

HAS 
INAL SOLUTION 
TIME BEEN 

ACHED? 

Figure E.L. Simplified flow chart of the reduced order model digital 
program 
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Figure E.2. The reduced order model equivalent circuit 
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